
Nuclear and Particle Physics

Barem 

i)The Heisenberg Uncertainty Principle relates the uncertainties ΔE in energy and Δt in time by:

Δ E Δt ≥
h

4 π

d ≈ cΔt, where c is the speed of light as the maximum value hypothetical possible. 

∆ t ≈
d
c
= 10−15m

3 ×108 m /sec
≈ 3.3× 10−24 s ec

∆ E ≈
h

4 π ∆ t
= 6 ,63 × 10−34 Jsec

4× 3 ,14 × 3 ,3 × 10−24 sec
=1 ,6 ×10−11 J=1 ,6× 10−11 J ×

1 MeV
1 ,6 × 10−13 J

=100 MeV

∆ E=m c2 and thus mπ=
∆ E

c2
=100 MeV /c2

.

Punctaj:                                                                                                                   2p

ii) The pion must then be captured and, thus, cannot be directly observed because that would 
amount to a permanent violation of mass-energy conservation. Such particles (like the pion it is 
a virtual particle, because they cannot be directly observed but their effects can be directly 
observed.) 

Punctaj:                                                                                                                   1p

iii) The correct result and numerical value is:  EK=
( mp+mn+mπ )2 c2−(mp+mn )2 c2

2mn

≅280 MeV

Punctaj:                                                                                                                   2p

iv)



Punctaj:                                                                                                                   2p

v) What was the dominant interaction (force) in this case. Calculate the radius of action of this 
interaction in the considered disintegration.

Δ E Δt ≥
h

4 π

x ≈ c∆ t=
h

4 π ∆ E
=

h

4 πmc2 =
3×108 m

sec
× 6 ,63× 10−34 Jsec

4×3 ,14×
83GeV

c2 × c2×1 ,6×10−10 J
GeV

=1 ,2 ×10−18m

Punctaj:                                                                                                                   2p

Oficiu:                                                                                                                     1p

Total:                                                                                                                      10p
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Thermodynamics 

1. The state equation of a thermodynamic system is: 

𝑝 =
𝐴𝑇3

𝑉
 

in which p, V and T represent pressure, volume and temperature, whereas A is a 

constant. The expression of the internal energy of the system is provided by the 

relation: 

𝑈 = 𝐵𝑇𝑛 ln (
𝑉

𝑉0
) + 𝑓(𝑇) 

in which B, n and V0 are constants, whereas f(T) is a function which depends only on 

temperature. Find the values of B and n. 

 

Solution 

From the fundamental equation of thermodynamics, one obtains: 

(1)  𝑑𝑆 =
𝑑𝑈

𝑇
+

𝑝𝑑𝑉

𝑇
 

U is function of state and has total exact differential: 

(2)  𝑈(𝑇, 𝑉) = (
𝜕𝑈

𝜕𝑇
)
𝑉
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)
𝑇
𝑑𝑉 

(3)  (
𝜕𝑈

𝜕𝑇
)
𝑉
= 𝑛𝐵𝑇𝑛−1𝑙𝑛 (

𝑉

𝑉0
) + (

𝜕𝑓

𝜕𝑇
)
𝑉
 

(4)  (
𝜕𝑈

𝜕𝑉
)
𝑇
= 𝐵

𝑇𝑛

𝑉
 

From the given equation of state: 

(5)  
𝑝

𝑇
=

𝐴𝑇2

𝑉
 

From (1), (3), (4) and (5), one obtains: 

(6)  𝑑𝑆 = [
1

𝑇
(𝑛𝐵𝑇𝑛−1𝑙𝑛 (

𝑉

𝑉0
) + (

𝜕𝑓

𝜕𝑇
)
𝑉
)] 𝑑𝑇 + [

1

𝑇

𝐵𝑇𝑛

𝑉
+

𝐴𝑇2

𝑉
] 𝑑𝑉 

(7)  𝑑𝑆 = [𝑛𝐵𝑇𝑛−2𝑙𝑛 (
𝑉

𝑉0
) +

1

𝑇
(
𝜕𝑓

𝜕𝑇
)
𝑉
] 𝑑𝑇 + [

𝐵𝑇𝑛−1+𝐴𝑇2

𝑉
] 𝑑𝑉 
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S is function of state (S=S(T,V)) and therefore the following relations hold: 

(8)  𝑆(𝑇, 𝑉) = (
𝜕𝑆

𝜕𝑇
)
𝑉
𝑑𝑇 + (

𝜕𝑆

𝜕𝑉
)
𝑇
𝑑𝑉 

(9)  
𝜕2𝑆

𝜕𝑉𝜕𝑇
=

𝜕2𝑆

𝜕𝑇𝜕𝑉
 

From (7), (8) and (9) one obtains: 

(10)  
𝜕(𝑛𝐵𝑇𝑛−2𝑙𝑛(

𝑉

𝑉0
)+

1

𝑇
(
𝜕𝑓

𝜕𝑇
)
𝑉
)

𝜕𝑉
=

𝜕(
𝐵𝑇𝑛−1+𝐴𝑇2

𝑉
)

𝜕𝑇
 

(11)  𝐵𝑇𝑛−2 = 2𝐴𝑇 

Therefore: 

  N=3 and B=2A 



Electricity and Magnetism
Grading                                                                   

Ex officio: 1point

The flux density B(x) in a close region of x-axis is

,                                                         0.5p 

where  is the center of the circular coil. 
For small radial deviations  , and the magnetic flux through the cross-

circular area  is given by the loop integral   of the magnetic vector potential  A. 

Since the contribution to this loop integral is only due to the angular component , 
we get

 .                                                       2p

The corresponding angular component  of canonical momentum is given by

 .                                                           3p

Noteworthy,  is a conserved quantity and since initially v is parallel to x-axis, (as 

follows from  for ). Therefore, we get

,                                                                    1p

,                                 1p

 .                                                   0.5p

Long after passing through the coil, the electron will have rotated around  x-axis with an 
angle  given by the fair approximation

 .                                             1p

Total: 10 points

Note: There is also a less elegant method to approach the problem. In essence, it proceeds 
as follows:

1



The infinitesimal flux through a closed cylindrical surface centered on x-axis, with length dx 

and  radius  r<<R,  is  .  Since  ,  , 

hence

,

.

The Lorentz force acting on electron is 

,

or

.

Therefore, with , we get the same equation as before.

, 

Regardless of the method used, the students received the appropriate score.
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Optică  - Barem

A. The constructive interference condition for λ’=640 nm is given by:

2nlcos θr+
λ ’
2

=m' λ ’ 0.25 p

while the destructive interference condition for λ’’=400 nm is given by:

2nlcos θr+
λ ’ '
2

=(m' '+ 12 ) λ ’ ' 0.25 p

where m’, m’’ are positive integer numbers, θr is the refraction angle for the respective 
incidence angle i=30o, sini=nsin θr. Considering the refraction law (Snell’s law) and 
rearranging the first two equations may be written as: 

 2 l√n2−sin2i=2m
'−1
2

λ ’

2 l√n2−sin2i=m ' ' λ ’ ' 0.25 p
By combining the two equations, we obtain:

2m' '

2m'−1
= λ ’
λ ’ '

=8
5
sau5m' '=4 (2m'−1 ) 0.25 p

m’’=4m si m’=(5m+1)/2 cu m=1,3,5…The minimum thickness is then obtained for 
m’’=4, m’=3: 0.5 p

l= 2 λ ’ '

√n2− sin2 i
l=0.65 μm 0.5 p

B. At the air-layer separation surface (no-n1):

{ Eo+Er=E1 t+E1 r
no Eo−noE r=n1E1t−n1E1 r

                  (1) 0.5 p

And at the layer-lens separation surface (n1-n):

{ E1 t e
− ikl+E1 r e

ikl=Et
n1E1 t e

− ikl−n1E1 r e
ikl=nEt { E1 t

n+n1
2n1

E t e
ikl

E1 r=
n1−n

2n1
E t e

−ikl

0.75 p

{ Eo+E r=
n+n1
2n1

Et e
ikl

+
n1−n

2n1
Et e

−ikl

no Eo−noE r=
n+n1
2

Et e
ikl

−
n1−n
2

Et e
− ikl



{ Eo+Er=(coskl+i nn1 sinkl)Et
no Eo−noE r=( in1 sinkl+ncoskl )E t

       The reflection coefficient in amplitude can be obtained from the previous equations as:

r=
Er
Eo

=
n1 (no−n )coskl+i (nno−n12 ) sinkl
n1 (no+n )coskl+i (nno+n12 ) sinkl

0.5 p

The equation of the energy reflection coefficient is then:

R=r r❑=
[n1 (no−n )coskl ]2+[(nno−n12 ) sinkl ]2

[n1 (no+n )coskl ]2+[(nno+n12 ) sinkl ]
2 0.25 p

The layer is anti-reflective, i.e. R=0, if nno=n1
2 and coskl=0, kl=π/2: 0.5 p

n1=√n=1.22 0.25 p

l=
λ1
4

=
λo
4 n1

=102nm 0.25 p

C. The equations between the incident and the reflected components for two 
consecutive separating surfaces can be expressed as (1):

     
Or using matrices as : 

( Eo+E r
noEo−no Er)=( coskl i

n1
sinkl

i n1 sinkl coskl )( E1 t+E1 r
n1Et−n1E1 r)=M ( E1t+E1 r

n1 Et−n1E1 r)0.5 p
Where the matrix M is defined for a layer of length l and refractive index n1.

M=( coskl i
n1
sinkl

in1 sinkl coskl )
( Eo+E r
noEo−no Er)=( coskl i

n1
sinkl

i n1 sinkl coskl )( E tn E t)=( coskl i
n1
sinkl

in1 sinkl coskl )( E t+0
nE t−n x 0)

From this, it results that after transversing N thin layers, we can write the following for the 

electric field components:( Eo+E r
noEo−no Er)=M 1M 2……M N( E tnE t)

0.25 p



When depositing 2N layers successively onto the surface of the support substrate n, if we 
have identical odd layers represented by n1 , l1 , and also identical odd layers represented by 
n2, l2, then a matrix relationship between the electric fields will result as:

( Eo+E r
noEo−no Er)=M 1M 2……M 2 N−1M2 N( E tnE t)=(M 1M 2 )N( E tnE t) 0.25 p

Where the matrix:

M 1M 2=( cosk1 l1 i
n1
sin k1 l1

i n1sin k 1l1 cos k1l1
)( cos k2l2 i

n2
sin k2 l2

i n2 sin k2 l2 cosk2 l2
)

This matrix becomes, in the case of some layers, a quarter wave l1=λo/4n1 ,  l2=λo/4n2 :

M 1M 2=( 0 i
n1

i n1 0 )( 0 i
n2

i n2 0 )=(
−n2
n1

0

0
−n1
n2

) 0.5 p

( Eo+E r
noEo−no Er)=((

−n2
n1 )

N

0

0 (−n1n2 )
N)( E tnE t)

The reflection coefficient for a mirror with N double layers is:

r=
( n2n1 )

2N

−
n
no

( n2n1 )
2 N

+ n
no

R=( (
n2
n1 )

2N

−
n
no

( n2n1 )
2 N

+ n
no

)
2

0.5 p

It is observable that the reflection coefficient's magnitude escalates as the number of layers 
increases, R1.

For N=1 the anti-reflective layer condition is:

( n2n1 )
2

= n
no

0.5 p

The condition is similar to the one obtained at point b, only this time it is easier to find two 
materials that have the relative index n21=√n /no than to find a material with this index. 0.5 
p



The reflection coefficient for a single titanium dioxide-magnesium fluoride double layer is: 

R=( n21
2−1

n21
2+1 )

2

=25% 1 p

The number of double layers necessary to obtain a reflection coefficient R is:

( n2n1 )
2 N

= 1+√R
1−√R

N=1
2

lg
1+√R
1−√R

lg
n2
n1

N=4 for R=95% 1 p
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1. The average lifetime of the muon in its proper/rest frame is 2.2 · 10−6s, its rest mass is
106 MeV.
(a) Assuming that muons travel at 99.8% of the speed of light, show that cosmic radiation
muons can indeed be detected on the surface of the Earth. Take d = 10km as thickness
of Earth’s atmosphere and 299.8 · 106m/s the speed of light. The direction of the muon is
vertical with respect to the ground.
(b) What is the smallest energy required for muons to hit the ground before they decay,
assuming that they are produced at an altitude of 10 km above ground? (here you drop the
velocity assumption at point (a)!). The direction of the muon is vertical again.
(c) A circular accelerator has a radius of 50m. How many turns can a muon take on average
in this ring before it decays if its energy is kept constant at 1 GeV? Here, take c = 3·108m/s.

Solution. (a) The lifetime τ0 is measured in the rest frame of the muon. Due to time
dilation, the lifetime in the rest frame of the Earth will be

τ = τ0γ(v),

where v is the velocity of the muon relative to Earth. [15%]
With v = 0.998c, one obtains

τ =
τ0√

1− v2

c2

≈ 15.8τ0.

During this time, the muon will move the distance

τv ≈ 15.8 · 2.2 · 10−6 · 0.998 · 299.8 · 106 m ≈ 10.4 km

which is bigger than the thickness of Earth’s atmosphere explaining the detection. [15%]

(b) The muon must travel the distance d = 10 km in the time τ , which is the time dilated
mean life τ0 of the muon in its rest frame. It follows that

d 6 vτ = vγ(v)τ0.

The velocity of the muon is given by v = pc2/E, and thus, we have

γ(v) =
1√

1− (v/c)2
=

E√
E2 − p2c2

=
E

mc2
.

Inserting this into the above inequality, we obtain

d ≤ pc

mc2
cτ0.

Inserting the numerical values, we find that pc & 15mc2 ' 1.6GeV, and thus, it holds
that E ' pc & 1.6GeV. [25%]

(c) A time interval for a muon and a time interval for an observer in the lab frame are
related through the time dilation formula

γ(v)dτ = dt,

1
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where dτ is the time interval for the muon, dt is the time interval for the observer n the lab
frame, and v is the muon velocity. The muon velocity is constant (since he total energy is
constant) and given by

v =
p

E
=

√
E2 −m2

E
=

√
1− m2

E2
,

where p is the muon momentum, E is the muon energy, and m is the muon mass.
[15%]
It follows that

γ(v) =
E

m
,

and thus, we obtain

t =
E

m
τ =

1GeV

106MeV
τ ' 9.5τ.

The average lifetime of the muon in the lab frame is therefore 21µs. Since γ(v) is known
we determine v/c ≈ 0.995, so the length travelled by the muon in the lab frame in the
average lifetime is given by

` = vt ≈ 0.995 · ct ≈ 0.995 · 3 · 108 m/s · 21 · 10−6 s = 6270 m.

[15%]
The circumference of the circular accelerator is given by

L = 2πr ' 300 m.

Thus, the average number of turns taken by a muon is given by

N =
`

L
' 21.

[15%]

2



How cold is too cold?

Since the latent heat of ice is given, the skating process has to be modelled
as a first order phase transition. This implies that (phase 1 is water, phase 2 is
ice in what follows)

(2p) µ1 = µ2 → dµ1 = dµ2. (1)

The chemical potential is also the reduced Gibbs potential, so

(1p) − S1dT1 + V1dp1 = −S2dT2 + V2dp2. (2)

The two phases are in thermal, chemical and mechanical equilibrium (by
definition of a first order phase transition). This is expressed mathematically as

(1p) p1 = p2 = p, T1 = T2 = T, (3)

together with relation (1). Inserting (3) into (2) we obtain the Clausius-
Clapeyron equation on the phase line

(1p)

(
dp

dT

)
phase line

=
S2 − S1

V2 − V1
. (4)

Moreover, at temperatures higher than those of phase transitions µ1 ¡ µ2 and
at temperatures lower than those of phase transition µ1 ¿ µ2. In other words,
there’s no ice above the freezing point and no water below the freezing point.
This implies that

(1p)

(
∂µ1

∂T

)
<

(
∂µ2

∂T

)
, (5)

i.e., for any temperature, S1 > S2.
The lowest temperature permitted for enjoyable skating is the temperature

at which the pressure on the coexistence line is equal to the pressure exerted by
the skater on ice. For a skater of normal weight and a reasonable skating blade
of sides 30 cm (to simplify calculations) by 1 mm, the pressure exerted by the
skater is p′ ≃ 13 atm (two blades per normal human). The specific volume of ice
is larger than the specific volume of water, Using the pressure and temperature
at the freezing point of water we obtain

(3p)
p′ − p0

Tmin − T0
= − h

Tmin∆V
, (6)

1



which can be inverted to obtain

(1p) Tmin =
T0

1 + (p′−p0)∆V
h

≃ −0.09o C (7)

2



Solution 
Neutrons in a box 

 
a) 

 the average time <t>=<D>/v=<D>/�2 ∗ �/� (1p) 
 the average distance travelled by a neutron before tunneling through a wall is 
< � >= � ∗ � + 3 ∗ � ∗ � ∗ � + 5 ∗ � ∗ �� ∗ � + ⋯ = � ∗ (1 + 3 ∗ � + 5 ∗ �� + ⋯ ) ∗ � (1p) 
 < � >= � ∗ (� + 1) ∗ �/(1 − �)� =  � ∗ (� + 1)/� (0.5p) 

 < � >=  � ∗ (� + 1)/ (� ∗ �2 ∗ �/� ) (0.5p) 
 

b) 
 the number of neutrinos that tunnel through the walls in a unit of time is equal to �/< � > 

(1p) 
 equilibrium is reached when � =  �/< � >, thus � = � ∗< � >= � ∗ � ∗ (� + 1)/( � ∗

�2 ∗ �/�)  (1p) 
 
c) 
 write the Schrodinger equation for the three sectors of the potential barrier (0.5p) 
 solve all the three Schrodinger equations (1p) 
 impose the continuity of the wave-function and of its first derivative (0.5p) 
 solve the system of equation produced by the continuity conditions (1p) 
 
d) 
 calculate the currents of probability (1p) 
 calculate the transmission and reflection coefficient (1p) 
 





O

Tiberius Cheche
Pencil

Tiberius Cheche
Pencil

Tiberius Cheche
Line










