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Preliminary remarks
Dear participants,

welcome to this year’s PLANCKS exercise booklet! Today, it’s all about solving (theoretical) physics
problems. The highest scoring teams will hold the title of this year’s PLANCKS champions. Before
solving the problems, please carefully read the following remarks and excerpts from the PLANCKS
rules containing important information about the exam:

1. The competition exam lasts four hours. There are ten problems each worth ten points.

2. The exercises are solved independently and without any external help by each team.

3. The teams commit to sticking to the rules, especially to fairness towards other teams in the
scientific contest. If a team violates the rules, it will be disqualified.

4. In case the formulation of an exercise is unclear, every participant can request clarifications
from the jury in written form by handing the question to the volunteers. The jury then an-
swers the question in written form. If the information is relevant for all teams, the jury will
inform every team.

5. The exercises are formulated in English. The solutions need to be handed in in English as
well.

6. The jury has the right to change or to withdraw problems during the competition. In such a
case, the jury informs every team and adjusts the grading appropriately. There are no further
consequences.

7. Usage of hardware which is not approved by the jury is forbidden. Dictionaries and non-
graphical calculators are allowed!

8. The organisers make sure in the best way possible that the participating teams have no access
to mobile devices during the competition.

9. In exceptional cases, the Organising Committee has the right to stop, to interrupt or to extend
the competition or to change the grading.

10. In case of dubiety concerning the rules and standards, the jury decides about those.

Last, please note the following:

• Solutions for different exercises have to be handed in on separate pieces of paper. This means
that you should start a new sheet when writing down the solution of a new exercise.

• Unreadable solutions won’t be corrected. If there are two solutions for one exercise and no
one is crossed out, both will be counted as wrong.

• Please write the name of your team on every sheet of paper you hand in.

If any questions arise during the competition, please ask the assistants on your floor.

We wish you a nice time and lots of success solving the PLANCKS 2022 problems!

The PLANCKS 2022 Jury (Oliver Diekmann, Max Fahn, Miriam Gerharz, Philipp Heinen,
Sören Kotlewski, Dr. Charlotta Lorenz, Alexander Osterkorn, Dominik Rattenbacher,
Dr. Markus Schmitt, Philippe Suchsland, Rajshree Swarnkar, Dr. Matthias Zimmermann)
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Problem 1

On the Gravitational Three-Body Problem
Prof. Dr. Karl-Henning Rehren – Georg-August-Universität Göttingen

Background One sometimes reads that in gravitating system ofN stars, each star “orbits around
the common center of mass”. This statement is certainly to a large extent true if “around” is meant
in a qualitative sense. But of course, the orbit is neither a circle nor a Keplerian ellipse with the
center of mass in its focal point, so that the notion “around” cannot be given a sharp meaning.
On the other hand, for three stars it is known that there exist very special solutions with the stars
in an equilateral triangle position that rigidly rotates around its center of mass (each star orbiting
in a circle) – independent of the masses.

We want to study (among other things) whether there is in general a single point ~x∗ in space such
that the total force vectors

~Fi =
∑
j 6=i

~Fi,j (1.1)

of each star point towards that point, and if so, whether this is a special feature of the 1/r2-law of
the gravitational force. For the sake of this problem, we put Newton’s constant GN = 1 and write
the force exerted by star 2 on star 1 as

~F1,2 = −m1m2
~x12

|~x12|n+1
(~xij := ~xi − ~xj). (1.2)

To begin with, we put n = 2 (Newton’s Law). It is not difficult to show that for N ≥ 4 stars, a point
~x∗ as specified above does not exist in general. (One may just think of systems subdivided into two
distant clusters.) So, we consider only N = 3.

a) [1 point] Recall that the center of mass can be defined as the unique point ~x0 such that

3∑
i=1

mi ·
(
~xi − ~x0

)
= 0. (1.3)

For the problem at hand, it is instead useful to define the “center of pseudo-mass” as the unique
point ~x∗ such that

3∑
i=1

m∗i ·
(
~xi − ~x∗

)
= 0, (1.4)

where the (configuration-dependent) “pseudo-masses” are defined as

m∗i := |~xjk|3 ·mi (1.5)

where j, k = 2, 3 if i = 1 and so on. Solve the equations (1.3) and (1.4) for ~x0 and ~x∗, respectively.
Can one expect that ~x∗ = ~x0 in general?

b) [3 points] Show that all total forces ~Fi point towards the center of pseudo-mass ~x∗.
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Hint: Use the result of part a) to show that ~xi − ~x∗ is a multiple of ~Fi. It is sufficient to do this for i = 1.

c) [4 points] Until this point, we have looked at a fixed instant of time. The next question is whether
the situation is stable in time, i.e., whether the triangle formed by the three stars can rigidly rotate
around the center of pseudo-mass. By the centrifugal law, this would require that

~Fi = −miω
2 ·
(
~xi − ~x∗

)
(1.6)

with a common ω2 for all i = 1, 2, 3. Analyze this condition (using the result of b) )!

d) [1 point] What changes in parts a) to c) if Newton’s 1/r2-law (1.2) were replaced by a 1/rn-law
(n 6= 0), i.e. |~xij |3 is replaced by |~xij |n+1 in (1.2) and in the definition of the pseudo-mass?

e) [1 point] What changes in parts a) to c) if n = −1, i.e., Newton’s law (1.2) becomes the elastic
force ~F1,2 = −m1m2~x1,2 proportional to the product of masses?
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Solution

a) Rearranging (1.3), one gets

~x0 =

∑
imi~xi∑
imi

. (1.7)

Similarly,

~x∗ =

∑
im
∗
i ~xi∑

im
∗
i

. (1.8)

Because the positions ~xi are averaged within general different relative weights (unless the three
distances are the same), the result will in general be different.

b) By a) and straight-forward computation, we have

~x1 − ~x∗ = ~x1 −
m1x

3
23~x1 +m2x

3
13~x2 +m3x

3
12~x3

m1x3
23 +m2x3

13 +m3x3
12

=
1

M∗

((
m1x

3
23 +m2x

3
13 +m3x

3
12

)
~x1 −m1x

3
23~x1 −m2x

3
13~x2 −m3x

3
12~x3

)
=

1

M∗
(
x3

13m2~x12 + x3
12m3~x13

)
= −x

3
12x

3
13

M∗m1
· ~F1,

(1.9)

where M∗ = m1x
3
23 + m2x

3
13 + m3x

3
12 is an abbreviation for the total pseudo-mass. Thus, the force

is anti-parallel to the distance from ~x∗. Same for i = 2, 3.

c) From b) and (1.6) we conclude:

x3
12x

3
13

m1M∗
!

=
1

m1ω2
⇔ ω2 =

M∗

x3
12x

3
13

= µ · x3
23

(
µ :=

M∗

x3
12x

3
13x

3
23

)
. (1.10)

Similar for i = 2, 3. Because µ is symmetric under permutations, and ω must be the same for all i,
we conclude |~x12|3 = |~x13|3 = |~x23|3, i.e., the stars must form an equilateral triangle. In this case, the
center of pseudo-mass equals the center of mass. This is the known solution. There is no other one.
The permutation-symmetric quantity µ and the side length of the triangle determine the period.

d) Nothing changes. Mutatis mutandis the same results remain true: All forces point towards the
center of pseudo-mass, which is in general different from the center of mass. A rigid rotation is
possible only for equilateral triangles with arbitrary masses.

e) In part a): Because 3 is replaced by n + 1 = 0, the pseudo-mass equals the true mass, and the
center of pseudo-mass coincides with the center of mass.
In part b): Nothing changes. The forces point to the center of mass. µ is the total mass.
In part c): The condition on the distance becomes x0

12 = x0
13 = x0

23 , i.e., 1 = 1 = 1. This is true
independent of the distances. Thus every triangle can rigidly rotate around its center of mass.

4 PLANCKS 2022 Problem 1



Problem 2

James Bond’s Car Crash in Casino Royale
Dr. Charlotta Lorenz, Dr. Sophie-Charlotte August, Prof. Dr. Sarah Köster – U Göttingen

Background Prof. Dr. Metin Tolan, physicist and president of the University of Göttingen, an-
alyzes in his book Shaken, not stirred – James Bond in the spotlight of physics a scene from the
James Bond movie Casino Royale: James Bond is chasing the villain Le Chiffre in a car. Suddenly,
Vesper Lynd, Bond’s girlfriend, is tied up on the road and Bond jerks the steering wheel to the left,
whereupon the car overturns. The following figure shows single frames from the scene in which
the car overturns. In the following task, we want to analyze whether the car can actually roll over
under the given circumstances.

The car has a mass m = 1750 kg, is b = 1.90 m wide and h = 1.28 m high. It drives with a speed
v = 128 km/h in the gravitational field of the earth with g = 9.81 m/s2.

a) [1 point] Model the car as a cuboid with a center of mass located centrally at the lower third of
the car. Sketch the cross-section of the car with all the forces acting on it when the steering wheel is
jerked around. Draw the point about which the car rotates when it rolls over sideways. We are only
considering rotation along the longitudinal axis of the car in this task.

b) [1 point] Calculate the forces and torques acting on the car.

c) [0.5 points] Think about what has to happen for the car to start rolling over instead of just driving
a turn.

d) [1 point] What is the minimum radius of the curve that the car must have before it starts to roll
over?

e) [0.5 points] In the film, the curve radius is about 200 m, so the car should not roll over by itself.
What must happen at a constant curve radius to allow the car to roll over anyway?

f ) [0.5 points] When the scene was shot, two additional measures were taken to make the car roll
over. One additional device was a L = 2.5 m long ramp, rising from 0 cm to H = 10 cm, over which
the left side of the car drove (that is, the car goes up the ramp with its left wheels). The following
figure is a simplified representation of the situation. Sketch the car on the ramp from the rear view,
and draw the centrifugal force and gravity with their point of application.

g) [1 point] Calculate the change in angular velocity (φ̇, see figure (b), where φ is drawn) of the car
caused by the ramp. Consider how long the car needs to drive over the ramp. For simplicity, assume
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that the height of the ramp can be neglected compared to its length. Then calculate the change in
angle of the left side of the car compared to the right side. Use small angle approximation.

h) [0.5 points] What does the change in angular velocity mean for angular momentum and torque
of the car? Describe the torque as a function of the car’s moment of inertia I and angular accelera-
tion.

i) [1 point] Now, to calculate the additional force acting on the left side of the car through the ramp,
we must first calculate the moment of inertia of the car with respect to the right tires around which
it rotates. Model the car as a cuboid. You do not need to explicitly derive the moment of inertia for
a cuboid; you can use the familiar formula. Use Steiner’s theorem.

j) [1 point] The torque engages the left side of the vehicle. Show that the factor

b/(c cosα)

is needed to convert the force from the left side of the vehicle to the center of gravity. b, c and α are
shown in the sketch above in (c). Use the lever laws and write the cross product as ~d× ~f = |~d||~f | sinα
with the angle α between the vectors. You can neglect φ here compared to α.

k) [1 point] Explicitly calculate the additional force FR generated by the ramp on the center of
gravity. Since the ramp is not very high, we can again assume α >> φ and α = 24◦.

l) [1 point] This force is not sufficient to make the car turn. The film producers tried it and for some
cars it works, but for the car used here it is not sufficient. Thus, as a second measure to make the
car overturn, an iron bolt with a massmB = 20 kg is accelerated by ∆vB = 10 m/s within ∆tB = 0.1
s and launched near the left wheels of the car as sketched in the following figure. Calculate the
additional force on the center of mass generated in this way. Note that here you must again apply
the laws of leverage as calculated in (j).

The ramp together with the iron bolt could finally make the car overturn.
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Solution
YouTube link: https://www.youtube.com/watch?v=x-21uPJGXFQ

a) 0.5 points for correct drawing of the forces; 0.5 points for the point of application of the forces.
a = c, b and h do not have to be drawn in.

b) Forces: centrifugal force FZ = mv2/r, gravity force FG = mg. The torques of the respective
forces act on the center of gravity of the car. We define c =

√
(h/3)2 + (b/2)2. (0.5 points for correct

forces; 0.5 points for correct torques)

MZ = FZc sinα , (2.1)

MG = FGc sinβ . (2.2)

c) The torque pulling the car outward must be greater than the torque pulling the car downward,
so MZ > MG. (0.5 points)

d) After reasoning in (c) and substituting in (b) and transforming, we get (0.5 points for correct
calculation; 0.5 point for correct result):

r < v2 tanα/g ≈ 57 m . (2.3)

e) Important key points in the solution: larger torque, change of angular momentum or similar.
(0.5 points for correct idea)

f ) Sketch (here the complete sketch from the book is shown. 0.5 points for sketching correct forces
and correct center of mass):
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g) Time it takes the car to go over the ramp (0.5 points for calculations and correct idea; 0.5 points
for correct result):

δt =
L

v
.

Angle change:

sin ∆φ =
H

b
≈ ∆φ .

Thus the change in angular velocity:

∆ω =
∆φ

∆t
=
vH

Lb

h) Angular momentum changes so that torque > 0 is created. The torque D is created (0.5 points):

D = I
δω

δt

i) Moment of inertia with c =
√

(h/3)2 + (b/2)2 (0.5 points for correct ansatz; 0.5 points for correct
solution):

I =
1

12
m(b2 + h2) +mc2 .

j) According to the lever laws, the sum of the total torques acting must be 0, or the torque generated
by the force ~FL on the left side of the vehicle must be equal to the torque generated by the force ~FR
on the center of gravity. That is, if the angle φ is negligible with respect to α (0.5 points for correct
ansatz, 0.5 points for correct result):

~FL ×~b = −~FR × ~c
FLb = −FRc sin(90◦ − α)

FLb = FRc cosα

⇒ FR
FL

=
b

c cosα
.
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k) (0.5 points for correct ansatz, 0.5 points for correct result)

FR =
D

r
=

IHv2

cbL2 cosα
≈ 11600 N .

l) With Newton you get (0.5 points):

FB,b = mB
δvB
δtB

= 2000 N .

In terms of the center of gravity, this corresponds to (0.5 points):

FB = FB,b
b

c cosα
≈ 4000 N.
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Problem 3

Rope around the World
Prof. Dr. David DiVincenzo1, Philippe Suchsland2 – 1Peter Grünberg Institute (PGI-2), Forschungszen-
trum Jülich, Jülich, Germany, 2Max Planck Institute for the Physics of Complex systems, Dresden,
Germany

Background A loop of rope goes around the circumference of the earth with radiusR. The rope
is ideal (∞ stretching modulus,∞ strength, 0 bending modulus, infinitely thin). Its mass density
is ρ (kg/m). Its length is such it can be held distance a above the surface, all the way around.
This means that if it is laid straight on the surface, there is a 2πa leftover. We assume a � R (e.g.
a = 1 m, R ∼ 106 m).

Someone grasps the rope at point P and raises it. What is the maximum height h to which it can be
raised?

a) [1 point] In a first step, we want to build up some physical intuition. First, introduce the quantity
l, the length of the rope not resting on earth when the rope is held at height h. Justify by dimensional
analysis and by analysing the limiting behaviour for a/R→ 0 in the case a = const or R = const that
h, l can be expressed by

l = c1a
1−αRα + . . . , 0 < α < 1, (3.1)

h = c2a
1−βRβ + . . . , 0 < β < 1, (3.2)

in the limit a/R� 1.

b) [0.5 points] Show that l/R� 1 for a/R� 1.

c) [2.5 points] Calculate the constants c1, c2, α, β by calculating l, h in the limit a/R� 1.
Hint: Except for l/R� 1 this task does not rely on the previous ones.

We now calculate tensions. Suppose the rope is raised to height h̃, πa < h̃ � h. The rope will look
something like this (not to scale):
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Cable theory shows that y(x), a so-called “catenary curve”, is a segment of hyperbolic-cosine curves
in the limit of uniform gravitational field. We aim to find the differential equations determining the
curves y(x). For that, consider the forces acting on the rope. We work in the limit of a/R → ∞ so
you may ignore the curvature of the earth and variations in the gravitational force in all following
subtasks.

d) [2 points] Derive, but do not solve, a set of three differential equations determining the three
unknown functions y(x), FR,x and FR,y, where FR,x and FR,y are the two vector components of the
tension of the rope ~FR. You are free to choose the reference system and express the strength and
direction of the gravitational force as ~g.

Hint: Consider the forces acting on a short section of the rope.

e) [1.5 points] By introducing the points G, where the rope begins to rest on the ground, write
down the boundary conditions for the differential equations derived in the previous task, i.e., the
conditions needed to fully determine the slope. Particularly, what is the force law that determines
the condition at the grounding points G?

f ) [1 point] Solve the set of differential equations.
Hint: You might find the solution of the integral∫

dz
1√

1 + z2
= asinh(z) + c, (3.3)

where asinh(z) is the inverse function of sinh(z), useful.

The solution of the differential equation takes the form y(x) = a + cosh(b(x− c))/b, which you can
use in the following.

g) [1 point] We raise P much higher, but still much lower than the maximum; in particular h̃ = h/10.
What is the tension of the rope at point P?

Hint: You may assume |y′| � 1 at point P .

h) [0.5 points] Based on the result of the previous exercise and h from part c), what will happen
with the rope if we raise a real rope in the limit R→∞ to height h̃ = h/10?
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Solution

a) As a first step as given in the exercise, we assume that h, l are analytical and, hence, can be
expressed as

l = c1R(a/R)1−α + O((a/R)1−α+ε1) (3.4)

h = c2R(a/R)1−β + O((a/R)1−β+ε2) (3.5)

for a/R� 1 with some α, β, ε1, ε2 > 0 and dimensionless constants c1, c2.
The limit a/R → 0 can be approached by a = const, R → ∞ or a → 0, R = const. In the limit of

a→ 0 the rope fits exactly one time around the earth and, hence, we expect h→ 0, l → 0, as h, l are
continues functions and at a = 0 h = 0, l = 0. In this limit for R = const the functions have to obey

l ∼ aα′ , h ∼ aβ′ (3.6)

with α′, β′ > 0 in order to approach 0 for a→ 0.
In the limit a = const, R→∞we expect both, h and l, to diverge towards infinity as well. In order

to see that we provide a lower bound on h which diverges. For that consider the construction as
shown in Fig. 3.1. Clearly, the maximum h is larger than the h̃. In the limit R→∞, higher orders in

Figure 3.1 Construction for the lower bound on h in the limit R→∞, a = const.

θ̃R vanish and we can write

h̃ =

√
(
√
aR/2 + πa)2 − aR/4 =

√
πa
√
aR+ π2a2. (3.7)

Hence, h̃→∞ and therefore h→∞ and l→∞. This requires for a = const

l ∼ Rα, h ∼ Rβ (3.8)

with α, β > 0. Combining this with the previous results we find

l = c1a
1−αRα, h = c2a

1−βRβ (3.9)

with 0 < α, β < 1.

b) This immediately follows from the previous task l/R = c1(a/R)1−α � 1.

c) Using the previous tasks we find that the angle θ, see Fig. 3.1, is small: For the angle sin(θ/2) =
l

2(R+h) with the relation θR + 2πa = l we find in the limit R � a that θ ∼ l/R and, hence, θ → 0

using the found scaling forms.
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We use the following relations. The rope is of length 2π(R + a) which has to coincide with the
length of l and the remaining circle

(2π − θ)R+ l = 2π(R+ a) (3.10)

⇒ l = 2πa+ θR (3.11)

⇒ θ = (l − 2πa)/R. (3.12)

We have shown that θ is small, so that we can write

l

2R
= tan(θ/2) ≈ θ/2 +

1

3
(θ/2)3 . (3.13)

This yields

l

2R
=
l − 2πa

2R
+

1

3

(
l − 2πa

2R

)3

(3.14)

1

3

(
(l − 2πa

2R

)3

=
2πa

2R
(3.15)

l − 2πa

2R
=

(
3πa

R

)1/3

(3.16)

l = 2πa+ 2R

(
3πa

R

)1/3

→ (24π)1/3a1/3R2/3. (3.17)

Now we obtain h via

(R+ h)2 = (l/2)2 +R2 (3.18)

⇒ h =
√

(l/2)2 +R2 −R =
l2

8R
+ O(R(l/R)4)→ (3π)2/3

2
a2/3R1/3. (3.19)

d) There are two equations that determine the slope of the rope y(x). The forces acting on a piece
of the rope and the reference system are shown in Fig. 3.2. Although solving the equations in the

Figure 3.2 Caption

reference system used might be rather complicated, writing down the equations is easier. Note that
the gravitational force g(x, y) is position dependent.
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One condition stems from the requirement that the rope is in equilibrium and, hence, all forces
cancel. We have the tension within the rope ~FR and the gravitational force pulling towards the
center of the earth

~FG(x) =

∫ s(x+dx)

s(x)
ds̃ρ~g(x(s̃), y(s̃)), (3.20)

where we integrated over the length of the rope s from x to dx. We can now substitute x for s by
using

d s

dx
=

√
1 +

(
d y

dx

)2

(3.21)

(heuristically ds2 = dx2 + dy2) yielding

~FG(x) =

∫ x+dx

x
dx̃ρ~g(x̃, y(x̃))

√
1 + y′(x̃)2 = ρ~g(x̃, y(x̃))

√
1 + y′(x̃)2dx+ O((dx)2). (3.22)

Using this we can write down the condition of the cancelling forces

~FR(x+ dx)− ~FR(x) + ~FG(x) = 0 (3.23)

⇒ d

dx
~FR(x) + ~FG(x) = 0. (3.24)

The second equation needed to determine the slope y is the given by the requirement that in
equilibrium, ~FR(x) has to be tangential to the rope. This yields

FR,y(x)

FR,x(x)
=

d y

dx
. (3.25)

So in total we have three differential equations and three unknown functions y(x), FR,y(x), FR,x(x).

e) As these are first order differential equations, we need three initial conditions to fix the slope.
These can be obtained by considering the point G, i.e., where the slope touches the ground. At this
point, FR,y(x = G) = 0 as the slope is tangential to the earth and ~FR is tangential to the rope. This
is equivalent to y′(x = G) = 0. At x = G we obtain as well y(x = G) = 0. The final condition is that
the rope is by πa longer than the curvature of the earth yE(x)∫ G

0
dx
√

1 + y′E(x)2 + πa =

∫ G

0
dx
√

1 + y′(x)2. (3.26)

So there is only one degree of freedom left, namely G.

f ) We simplify the equations by neglecting the curvature of the earth and the spatial dependence of
the gravitational force. In that case h(x) = y(x) and ~g = −g~ey, i.e., the reference system previously
chosen is aligned with the earth. The differential equations simplify to

d

dx
FR,x(x) = 0, (3.27)

d

dx
FR,y(x)− ρg

√
1 + y′(x)2 = 0, (3.28)

FR,y/FR,x = −y′(x). (3.29)
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The first yields FR,x(x) = const ≡ FR,x. Using this, the second can be rewritten to

FR,xy
′′(x)− ρg

√
1 + y′(x)2 = 0. (3.30)

There are various ways to solve this differential equation.
Aside guessing the solution the easiest might be to use the hint with the substitution x → y′(x)

and find ∫
dy′

1√
1 + (y′)2

= asinh(y′) + const (3.31)

⇔ asinh(y′) =
ρg

FR,x
x+ C1. (3.32)

Integration of y′(x) yields

y(x) = b−1 cosh(bx+ C1) + C2, (3.33)

where we introduced b = ρg/FR,x. We can determineC1 andC2 in terms ofG via y(G) = 0, y′(G) = 0
so that

y(x) = b−1(cosh(b(x−G))− 1). (3.34)

g) We now exchange one constraint of the system in comparison to the previous task: we require
y(0) = h̃ = h/10, where h is the maximal height given in the first subtask. This fully determines the
system.

The aim of this task is to calculate the total tension in the rope at x = 0, namely the square root
of F 2

R,x + F 2
R,y.

We obtain the total tension within the rope by finding FR,x by calculating b in dependence of h, a
and then FR,y by calculating y′(0) and G in dependence of h, a.

Using the found form, the condition y(0) = h/10 = h̃ translates to

(cosh(bG)− 1)/b = h̃. (3.35)

The condition of a rope of fixed length becomes

G+ πa =

∫ G

0
dx
√

1 + y′(x)2 =

∫ G

0
dx

√
1 + sinh2(b(x−G)) = sinh(bG)/b. (3.36)

As given in the task, we use |y′(0)| � 1. It follows |bG| � 1. We now have to taylor all expressions
up to third order in bG as otherwise G+ πa = sinh(bG)/b cannot be fulfilled. Tayloring yields

G+ πa = G+ (bG)3/(6b) ⇔ πa = b2G3/6 (3.37)

bG2/2 = h̃. (3.38)

Inserting the two equations into each other allows to deduce

πa =

(
2h̃

G2

)2

G3/6 (3.39)

⇒ G =
2̃h

2

3πa
(3.40)

⇒ b =
2h̃

G2
=

9π2a2

2h̃3
. (3.41)

Problem 3 PLANCKS 2022 15



Hence, it follows

F 2
R,x + F 2

R,y = F 2
R,x(1 + [y′(0)]2) =

(
4ρ2g2h̃6

81π4a4

)(
1 +

9a2π2

h̃2

)
. (3.42)

We can find the scaling of the solution using the first task so that a2/h̃2 � 1 and

F 2
R →

ρ2g2R2

16(10)6π2
. (3.43)

h) The rope breaks.
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Problem 4

The Galactic Centre Laboratory
Dr. Odele Straub – ORIGINS Excellence Cluster and Max Planck Institute for Extraterrestrial Physics

Background The Milky Way, our home galaxy, is the second largest galaxy (after Andromeda)
in the local neighbourhood; it spans about 30 kpc (1 kpc = 1000 pc = 3.1 ×1019 m) in diameter.
Deep in its centre resides the supermassive, compact radio source, Sagittarius A∗ (Sgr A∗ ). While
most bright and young stars in the Milky Way are located in the gas rich spiral arms of the galactic
disc, the overall star count increases towards the centre. In particular in the innermost 0.04 pc
there is a dense cluster of about 100 young and fast moving stars called the S-stars. Their orbits
around the central gravitating mass have random orientations. This central region cannot be
observed at optical wavelengths due to the thick molecular clouds in our line of sight. However,
in the infrared it is possible to pierce through the dust. GRAVITY is a beam-combiner instrument
that links the four 8-meter infrared telescopes of the Very Large Telescope (VLT) in Chile into one
giant telescope with a diameter of D = 130 m. With its high angular resolution, GRAVITY can
monitor extremely faint and distant objects, like the stars in the immediate vicinity of Sgr A∗ ,
with a precision that allows to record daily changes in their motion. Consequently, the Galactic
centre region has now become a new ”laboratory” to probe and test general relativity.

Useful constants: the gravitational constant, G = 6.7×10−11m3/kg s2, the speed of light in
vacuum, c = 3×108 m/s.

a) [2 points] Mass of the Milky Way: The Sun with its mass ofM� = 1.99× 1030 kg is an average star.
It sits at the edge of a spiral arm of the Milky Way and orbits Sgr A∗ at a distance of r0 = 8.28 kpc
with a circular velocity of v� = 251.05 km/s.

(i) Estimate the mass of the Milky Way in units of solar masses.

(ii) Explain why this is only a lower limit.

The actual stellar content can be derived from luminosity measurements and amounts to roughly
15% of the total mass of the Milky Way.

(iii) Where and/or what is the rest?

b) [2 points] Mass of Sgr A∗ : Astronomers deduce the mass of Sgr A∗ from the motion of the S-
stars. The star S2 (see Fig. 4.1) is particularly well suited due to its short orbital period of P = 16.05
years, small semi-major axis of a = 0.125” (arcseconds) and high eccentricity e = 0.88. Its closest
approach to the central gravitating mass, i.e. its pericentre is rperi = 14 mas (milli-arcseconds). First
convert the angular size of the orbit from arcseconds to SI units with the help of the Sun’s distance
from Sgr A∗ . Then calculate the mass of Sgr A∗ in units of solar masses.

c) [2 points] Size of Sgr A∗ : A black hole (BH) is a mathematical object native to a theory of gravity.
It is defined by having a horizon instead of a surface, i.e. a critical radius from where not even light
can escape.

(i) Derive the critical radius from Newtonian principles. The resulting formula is also found in
the theory of General Relativity (GR) and called Schwarzschild radius, rS .
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Figure 4.1 Orbits of some of the inner S-stars around Sgr A∗ , the supermassive compact object in the centre
of the Milky Way. The star S2 (red) is due to its short and highly eccentric orbit the most interesting probe
of the gravitational field of Sgr A∗ . At the bottom right, for comparison, some orbits of Solar System bodies.
Figure credit: Eisenhauer et al. (2005)

(ii) Calculate rS of Sgr A∗ for the mass you determined above and compare it to Neptune’s mean
distance from the Sun, rNeptune = 4.5 billion km.

The GRAVITY/VLT instrument not only sees the stars near Sgr A∗ but also detects flickering light
from a location even closer. This light originates from occasional hot plasma flares. They loop
around Sgr A∗with an average radius of 60 µas (micro-arcseconds).

(iii) Argue, considering theory and observations, why Sgr A∗must be a compact object and is likely
to be a BH.

d) [1 point] GRAVITY Instrument: The perhaps most important equation in (observational) as-
tronomy gives the angular resolutionR of any telescope in units of radians for any given wavelength
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λ and telescope diameter D

R = 1.22
λ

D
, (4.1)

GRAVITY/VLT observes at infrared wavelengths of 2.2 µm. What is its resolution? Estimate the
diameter of an infrared telescope needed to resolve the black hole horizon. Where would you build
it?

e) [1 point] Gravitational Redshift: There are three classical tests of GR proposed by Albert Ein-
stein: the perihelion precession of planet Mercury, the deflection of light by the Sun, and the grav-
itational redshift of light. To detect the effect of gravitational redshift in the galactic centre, one
follows the star S2 on its orbit. Astronomers not only track its positions (with GRAVITY) but also
record the radial velocities using a spectrometer (e.g. SINFONI, or ERIS at the VLT). The stellar
spectrum shows a prominent absorption line at a wavelength λ′. Explain what gravitational red-
shift is and how it is related to the star’s velocity. Where do you expect the strongest effect during
the orbit of S2?

f ) [2 points] Precession of the Pericentre: Recently, astronomers showed that the star S2 precesses
around Sgr A∗ . That is to say, S2 is not moving on a closed ellipse, but on an open rosette-like tra-
jectory. With this finding GR passed another test in the Galactic centre. S2 currently approaches the
apocentre of its orbit, i.e. the farthest point from Sgr A∗ . Observations indicate that the pericentre
of S2 advances each orbit by a small angle, δϕ = 12′/orbit. Calculate by how much the position of
the apocentre changes (in mas). Can GRAVITY resolve this? Note: with the help of adaptive optics
the exposure time on a target star can be prolonged so that the actual resolution is about ten times
better than the nominal R-value you calculated above.
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Solution

a) The solar velocity is given by the local standard of rest in Reid et al (2020), Θ = 30.32 km/s/kpc.
With the GRAVITY Col. (2021) measurement of r0 = 8.28 kpc this gives an angular speed of v� =
251.05 km/s. For any body on a stable circular orbit, the centripetal and the gravitational force are
in equilibrium. One can write

mS2v
2
�

r0
=

GmS2Menclosed

r2
0

(4.2)

Menclosed =
v2
�r0

G
(4.3)

= 2.41× 1041 kg, (4.4)

where r0 = 8.28 kpc = 2.55 × 1020 m. Alternatively, one can calculate the orbital period of the Sun
from the distance to Sgr A∗ and the solar circular velocity

P� = 2πr0/V� = 6.415× 1015s. (4.5)

It takes the Sun a bit more than 200 million years to go once around the Galactic centre. Then,
relating the orbital velocity to the period via

v =
2πr

P
(4.6)

one finds Kepler’s 3rd Law

Menclosed =

(
2π

P�

)2 r3
0

G
= 2.41× 1041 kg (4.7)

The enclosed mass given in solar masses is then Menclosed = 1.21× 1011 M� .

This is a lower mass estimate on the mass of the Milky Way. The Sun at r0 from the centre is
located somewhere near the middle of the Milky Way disc. The calculation does not account for
the stars outside the Sun’s orbit. Recent calculations (e.g. Watkins et al. 2019, using Gaia DR2 and
HST measurements of the proper motion of globular clusters) find a mass of about 4 × 1011 M� .
This value is associated to the stellar disc with an outer radius of 39.5 kpc. The calculated mass is
not the pure stellar mass content but the total mass, i.e. the stellar/baryonic matter as well as the
dark matter content. The stellar mass content is only about 15% of the total mass of the Milky Way.
The dark matter envelopes the entire Milky Way in a halo. It has a density distribution that is mostly
flat but increases towards the Galactic centre.

b) First convert the semi-major axis of S2 from arc-seconds to metres using r0

arcsec =
1

3600

π

180
· r0 = 1.247× 1015 m. (4.8)

The semi-major axis of S2 is a = 1.560× 1014 m. Then use Kepler’s third law Eq.4.7 to calculate the
mass of Sgr A∗ in SI units

MSgrA∗ =

(
2π

PS2

)2 a3

G
= 8.762× 1036 kg (4.9)
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which gives, divided by the mass of the Sun, a black hole mass of

MSgrA∗ = 4.381× 106M�. (4.10)

c) The Newtonian escape velocity of any gravitating body is derived by equating the kinetic and
gravitational energies

Ekin = Epot (4.11)

1

2
mv2 =

GMm

r
(4.12)√

2GM

r
= vescape (4.13)

Light (i.e. c, the speed of light) does not escape black holes. The critical radius is then given by
setting vescape = c so that

rcrit =
2GM

c2
= rS (4.14)

The critical, or Schwarzschild radius of Sgr A∗ one finds by setting M = MSgrA∗ which gives

rS = 1.26× 1010m. (4.15)

The observation of flares indicate that an invisible object resides inside a radius of 60µas. With the
conversion

1” =
1

3600

π

180
r0 = 1.24× 1015m (4.16)

the flare radius is
rflare = 60µas = 7.42× 1010m (4.17)

This implies that the flares orbit around Sgr A∗ at about 6 rS . The entire mass of Sgr A∗must be
inside this radius.

A star of the same mass (assumeing an average density of about ∝ 103kg/m3) would not fit in. A
more compact object like a neutron star (average density of about ∝ 1017kg/m3 ) might. However,
in neutrons stars, the Fermi pressure that arises due to degenerated atomic nuclei and this can
support masses up to about 2.5 - 3M� (the precise maximal value depends on the equation of state
of the neutron star interior and is to date unknown). There is no known mechanism that supports
masses greater than 3 M� . For all intents and purposes Sgr A∗ is considered to be a massive black
hole.

d) Using D = 130 m from the introduction and λ = 2.2µm one obtains

R = 1.22
λ

D
= 3.69 mas. (4.18)

In order to resolve the radius of Sgr A∗ calculated above, now given in µas

rS = 10.21µas, (4.19)

one has to convert it to radians (divide the above rS by (180/Pi · 3600)) to find the required telescope
diameter of

D = 1.22
λ

rS(180/P i ∗ 3600)
= 54.22 km (4.20)
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e) Gravitational redshift is the phenomenon that photons travelling out of a gravitational well lose
energy. Given that the speed of light is constant and the photon cannot slow down, this loss of
energy corresponds to an increase in wavelength (or decrease in frequency) towards the redder
part of the spectrum. The radial velocity is derived from the Doppler shift of the wavelength λ′ of
the Brγ absorption line seen in the spectrum of the moving S2 and compared to the value at rest
(λ)

λ′ − λ
λ

=
v⊥
c
. (4.21)

The total gravitational redshift is composed of a special relativistic component, the transverse Doppler
shift, and a general relativistic component, the actual gravitational redshift. The effect is strongest
when S2 is closest to Sgr A∗ , at the pericentre.

f ) We know that the pericentre advances after one orbit (after 16 years) by

δϕperi = 6π
GM

c2a(1− e2)
= 12.1′/orbit (4.22)

in one direction (to the east for S2). This implies the apocentre advances about the focal point
(Sgr A∗ ) by the same angle to the other direction. The problem can be solved by trigonometry.
First, calculate the distance from Sgr A∗ to the apocentre

rapo = 2 · a− rperi = 236 mas. (4.23)

Then, consider the isosceles triangle {rapo 1 → Sgr A∗ → rapo 2} where δϕperi is the angle between
the two apo-legs. Split the angle in half and calculate the half-separation between the apocentres,
then multiply by 2 to the total separation

x = 2 · rapo · sin
(
δϕ

2

π

180

)
= 0.83 mas. (4.24)
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Problem 5

Conditions for a Self-Heated Fusion Plasma
Prof. Dr. Sibylle Günter – Max Planck Institute for Plasma Physics, Garching bei München, Germany

Background In a fusion power plant, energy shall be released by the fusion reaction of a deu-
terium and a tritium nuclei to an α particle and a neutron:

D + T→ 4He + n+ 17.5MeV. (5.1)

To overcome the Coulomb barrier, the reactants need a sufficient kinetic energy. The number
of Coulomb collisions is however always larger than the number of fusion reactions. Therefore,
a positive energy balance can only be achieved in a thermal plasma. The D-T reaction has the
highest fusion rate compared to any other reaction, at lowest plasma temperature. Neverthe-
less, a plasma temperature of about 10 keV is required. In a future reactor, the plasma should be
heated by the energy released in the fusion reactions. The neutrons leave the plasma nearly with-
out interactions, and thus only the α particles contribute to plasma heating. The heat (=energy)
transport of a magnetically confined fusion plasma is determined by several effects, of particu-
lar importance are radiation (mostly bremsstrahlung) and turbulent transport. To characterize
the energy losses, often the so-called energy confinement time τE is used, a measure that corre-
sponds to the time after which the plasma is significantly cooled down (after heating is switched
off).

a) [2 points] Calculate how the total energy of 17.5 MeV is divided between 4He and the neutron in
the centre of mass frame of the fusing particles.

Hint: Use momentum and energy balance.

b) [2 points] Calculate the heating power Pheat due to the α particles for a fusion power plant
(volume: V = 1000 m3) with a constant electron density of ne = 1020 m−3. Assume that the
plasma consists of 50% D and 50% T ions and the electrons. Keep in mind that the plasma is al-
ways (quasi-)neutral, i.e. the number of electrons balances the number of ions. For a thermal
plasma, the reactivity (number of fusion reactions per volume per time) is approximately given by
〈σv〉 ≈ 10−22 m3s−1 for T = 10 keV.

c) [2 points] Provide an expression for the loss power. The loss power Ploss is defined by the thermal
energy of the plasma devided by the energy confinement time τE . Assume that the plasma behaves
like an ideal gas.

d) [2 points] Balance plasma heating and loss power to derive the so-called Lawson criterion, a
criterion in terms of plasma density n = ni, i.e. equal to the ion density, temperature T and en-
ergy confinement time τE . Please note: In the temperature range considered (≈10 keV) the fusion
reactivity increases with temperature approximately proportional to T 2.

e) [2 points] As the fusion reactions produce 4He, it is not consistent to assume that the plasma
consists of D and T only. By how much would the fusion power be reduced as compared to a pure
D-T plasma if 10% of the plasma ions would be 4He?
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Solution

a) As momentum and energy of the fusion products are much higher than that of D-T, the momen-
tum balance can be written as:

mαvα ≈ −mnvn. (5.2)

Energy conservation is given by

mα

2
v2
α +

mn

2
v2
n ≈ QDT ≈ 17.5 MeV. (5.3)

From these equations one finds
Eα
En

=
mn

mα
=

1

4
(5.4)

and thus En = 14.1 MeV and Eα = 3.5 MeV.
0.5 points for correct momentum balance
0.5 points for correct energy balance
0.5 points for energy ratio is mass ratio
0.5 points for correct results

b) The fusion power available for plasma heating is given by

Pheat = nDnT 〈σv〉EαV. (5.5)

As the plasma consists of 50% D and 50% T, this results in

Pheat =
n2

4
〈σv〉EαV, (5.6)

where n = ne = ni is the plasma density equal to electron and ion density in a (quasi-)neutral
plasma and we used that nD = nT = n/2. With Eα = 3.5 MeV and V = 1000 m3 one finds

Pheat ≈ 140MW. (5.7)

1.5 points for correct deviation
0.5 points for correct numerical result

c) Considering the plasma as an ideal gas, the plasma energy is given by

Eplasma =
3

2
(ne + ni)kBTV, (5.8)

where ne is the electron density and ni is the ion density. Assuming quasi neutrality (ne = ni = n)
the loss power is given by

Ploss =
Eplasma
τE

=
3nkBT

τE
V. (5.9)

1.5 points for correct equation for energy
0.5 points for correct equation of Ploss

d) Assuming 〈σv〉 = crT
2 and balancing the heat power

Pheat =
nDnT

2
〈σv〉EαV ≈

n2

4
crT

2EαV (5.10)
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with the loss power

Ploss =
3nkBT

τE
V (5.11)

gives the Lawson criterion:

nTτE >
12kB
crV Eα

=: c. (5.12)

(Given the numbers above c ≈ 3 · 1021keV s/m3).
0.5 points for correct 〈σv〉 dependence
0.5 points for correct balancing ansatz
1 point for correct Lawson-criterion

e) 10% He provides 20% of the plasma electrons (as Z=2) and thus reduces the ion density ni =
nD +nT to 80%. As the fusion power is proportional to n2

i = (nD + nT )2, the fusion power would be
reduced by 36%.
1 point for correct estimation of ion density
1 points for correct result
Alternative argumentations are fine if correct
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Problem 6

Boltzmann-Factors from Information Entropy
Prof. Dr. Björn Malte Schäfer – Fakultät für Physik und Astronomie, Heidelberg University, Germany

Background Statistical mechanics operates under the assumption (called the fundamental pos-
tulate) that in thermal equilibrium all states at a given energy are equally likely (defining the
microcanonical ensemble) and if energy can fluctuate, states with energy difference ∆ε are pop-
ulated according to the Boltzmann factor,

p(∆ε) = exp

(
− ∆ε

kBT

)
, (6.1)

T being the temperature and kB the Boltzmann-constant. There is a more fundamental idea
though: Claude Shannon has shown that the information entropy S

S = −
∫

dx p(x) ln p(x) = −〈ln p〉 (6.2)

is a positive measure of randomness of a distribution p(x) and is additive for independent ran-
dom processes. There are also alternatives, for instance the entropy measure,

Sα =
1

1− α
ln

∫
dx pα(x) = − 1

α− 1
ln〈pα−1〉 (6.3)

with a free positive parameter α 6= 1 proposed by Alfred Rényi.
One could now try to reason like this: (i) thermal equilibrium should correspond to the state of
highest randomness, and as (ii) information entropy is such a measure of randomness, the distri-
bution of systems of an ensemble in thermal equilibrium should realize the highest information
entropy.

Information entropies S and Sα are functionals for the actual distribution p(x)dx, x being the
collection of phase space coordinates, and therefore one can carry out functional variations and
find the corresponding distributions: We shall try this for Shannon’s entropy as well as for Rényi’s
entropy!

a) [2 points] Let’s get ready with entropies.
Please compute the entropy S for a Gaussian distribution

p(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
, (6.4)

as a function of σ2. What is the Shannon-entropy S for a step distribution

p(x) =

{
1
b−c if c < x < b

0 else
, (6.5)

does the entropy increase if the interval or the variance become larger? What is the physical inter-
pretation of this? Now, try out the Rényi-entropy for both distributions: Do they scale in a similar
way with σ2 or b− a?

Hint: The relation
∫

dx e−x
2

=
√
π might be useful.
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b) [2 points] Micro- and canonical ensembles from Shannon’s entropy
The constant distribution for the microcanonical ensemble is derived like this: One determines
the distribution that maximises S under the boundary condition

∫
dx p(x) = 1. This leads to the

following variation

δ

[
S(p) + λ

(∫
dx p(x)− 1

)]
= −δ

∫
dx p(x) ln p(x) + λδ

(∫
dx p(x)− 1

)
= 0 (6.6)

with a Lagrange-multiplier λ. The solution is p(x) = e(λ−1) = const, where λ can in principle be de-
termined from

∫
dx p(x) = 1. A constant distribution maximises therefore S, and the constant dis-

tribution of systems across phase space x would already be the microcanonical ensemble! Please
solve equation (6.6) and confirm that p(x) = e(λ−1) = const is a solution.

Let’s try out to get the Boltzmann-factor: Please derive the distribution p(x) that maximises
S with the additional boundary condition

∫
dx p(x)ε(x) = ε (imposed with a second Lagrange-

multiplier µ), here ε(x) is a function which returns the energy for given system-coordinates x, the
exact form of this function is irrelevant for the exercise. Furthermore, show that

p(ε(x2))

p(ε(x1))
= exp (µ · (ε(x2)− ε(x1))) (6.7)

at fixed x, which has already the shape of a Boltzmann-factor. Please show by using the definition
of temperature T in the microcanonical ensemble,

∂S

∂ε
=

1

kBT
(6.8)

that the Lagrange-multiplier needs to be µ = −1/(kBT ).
Hint: Here is a short recap on variational calculus: You may view the entropy S as a functional, mapping a

function p : R → R to a real value S(p) = −
∫

dx p(x) ln p(x). For such a functional, the first variation is given
by δS(p) = ∂

∂εS(p + εh)|ε=0, where h is another function from the same vector space as p. If the first variation
of S around p equals 0, you know that p maximizes or minimizes S. The same method can also be used with
boundary conditions by adding them via constant Lagrange-multipliers, as shown in equation (6.6).
For this task, you don’t have to determine the exact value of the Lagrange-multiplier λ.

c) [2 points] Micro- and canonical ensembles from Rényi’s entropy
Show that the constant distribution maximises the Rényi entropy Sα, which would correspond to
the microcanonical ensemble. Generalising this result with a constraint on energy, can you derive
the ratio p(ε(x2))

p(ε(x1))? What needs to hold for ε(x2) − ε(x1), such that you can approximate the result to
a similar form as the result for the Shannon entropy. At last derive the Boltzmann-factor µ from the
maximised Rényi entropy and ∂S

∂ε = 1
kBT

(without any approximations).
Hint: Again, the actual value of the Lagrange-multiplier λ does not matter.
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d) [2 points] Equivalence of Shannon and Rényi-entropies
Please show that in the limit α → 1 one recovers Shannon’s entropy measure from the Rényi-
entropy,

lim
α→1

Sα = S (6.9)

Hint: Use de l’Hôpital’s rule.

e) [2 points] Choice of Shannon’s entropy
The familiar Boltzmann-factor comes out if one chooses Shannon’s entropy as a measure of ran-
domness, and Rényi’s entropy would not reproduce it: What is it in the mathematical formulation
about the Rényi-entropy that makes it contradictory to physical observations?

Hint: That’s a tough question and there are different strategies to answer it. Maybe think about the case of
multidimensional system and conditional probabilities. Alternatively it might help to argue with the scaling
of a physical law in mind.
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Solution

a) Let’s calculate the entropy for a Gaussian distribution

S =−
∫

dx p(x) ln [p(x)]

S =−
∫

dx
1√

2πσ2
e−

x2

2σ2 (−1

2
ln
[
2πσ2

]
)

−
∫

dx
1√

2πσ2
e−

x2

2σ2

(
−x2

2σ2

)
=

1

2
ln
[
2πσ2

]
+

1

2
ln [e]

=
1

2
ln
[
2πσ2e

]
. [0.5 Points]

Here, we used
∫

dx e−x
2

=
√
π.

Now the calculation for the constant function

S =−
∫

dx p(x) ln [p(x)]

=−
∫ b

c
dx

1

b− c
ln

[
1

b− c

]
= ln [b− c]. [0.5 Points]

The Shannon-entropies of both distributions increase logarithmically with σ2 and (b−c), respec-
tively. If σ2 and (b− c) are small, the state of the system is fairly localized, leading to a small entropy,
since small entropy goes hand in hand with a small uncertainty in the system.
Now let’s have a look at the Rényi-entropies:

Sα =− 1

α− 1
ln

∫
dx pα(x)

=− 1

α− 1
ln

[∫
dx

(
1√

2πσ2

)α
e−

αx2

2σ2

]
y =
√
αx; dy =

√
αdx

=− 1

α− 1
ln

[∫
dy

1√
α

(
1√

2πσ2

)(α−1)( 1√
2πσ2

)
e−

y2

2σ2

]

=
1

α− 1
ln

[√
α (2πσ2)(α−1)

]
. [0.5 Points]

Now for the linear distribution:

Sα =− 1

α− 1
ln

∫
dx pα(x)

=− 1

α− 1
ln

[∫ b

c
dx

(
1

b− c

)α]
=

1

1− α
ln
[
(b− c)(1−α)

]
= ln [b− c] . [0.5 Points]

Problem 6 PLANCKS 2022 29



The Rényi-entropies for the two distributions have the same scaling as the Shannon entropies! [If
all integrals are right, but the scaling was not compared substract 0.5points]

b) Prove that a constant function maximizes the entropy:

δS = −δ
∫

dx p(x) ln p(x) + λδ

(∫
dx p(x)− 1

)
= 0

δS =

∫
dx [− ln p(x)− 1 + λ] δp = 0

→ ln p(x) = λ− 1

→p(x) = eλ−1 [0.5 Points]

Same strategy for the Boltzmann-factor:

δS = −δ
∫

dx p(x) ln p(x) + λδ

(∫
dx p(x)− 1

)
+ µδ

(∫
dx ε(x)p(x)− ε

)
= 0

→ ln p(x) = λ+ µε− 1

→p(x) = eλ+µε−1. [0.5 Points]

Therefore the ratio at two different energies ε1 = ε(x1) and ε2 = ε(x2) is
p1

p2
= e(µ(ε1−ε2)) [0.5 Points]

Now we have to determine the prefactor µ via ∂S
∂ε = 1

kBT
:

∂S

∂ε
=

∂

∂ε

[
−
∫

dx p(x) ln
(
eλ+µε(x)−1

)]
=

∂

∂ε

[
−
∫

dx p(x) (λ+ µε(x)− 1)

]
= − ∂

∂ε
[λ+ µε− 1] = −µ

→ µ = − 1

kBT
. [0.5 Points]

c) We are repeating the calculation for the Rényi entropy. First the constant distribution:

δS =
−1

α− 1
δ ln

[∫
dx p(x)α

]
+ λδ

(∫
dx p(x)− 1

)
= 0

=

∫
dx

[
−α
α− 1

1∫
dx pα

pα−1 + λ

]
δp

→ p(x) =

(
λ
α− 1

α
C

) 1
α−1

with C =

∫
d xp(x)α. [0.5 Points]

Now let’s calculate the Boltzmann factor:

δS =
−1

α− 1
ln

[
δ

∫
dx p(x)α

]
+ λδ

(∫
dx p(x)− 1

)
+ µδ

(∫
dx ε(x)p(x)− ε

)
= 0

=

∫
dx

[
−α
α− 1

1∫
dx pα

pα−1 + λ+ µε(x)

]
δp

→ p(x) =

(
(λ+ µε(x))

α− 1

α
C

) 1
α−1

with C =

∫
d xp(x)α. [0.5 Points]
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We obtain for the ratio at two different energies:

p(ε2)

p(ε1)
=

(
λ+ ε2µ

λ+ ε1µ

) 1
α−1

= e

[
1

α−1
ln
(
λ+ε2µ
λ+ε1µ

)]

= e

[
1

α−1
ln

(
1+ε2

µ
λ

1+ε1
µ
λ

)]

≈ e
[

1
α−1

µ
λ+µε1

(ε2−ε1)
]

for small energy difference. [0.5 Points]

The Rényi entropy gives only in approximation a normal exponential scaling! Now we calculate µ.

∂S

∂ε
=

∂

∂ε

−1

α− 1
ln

[∫
dxp(x)α−1p(x)

]
=

∂

∂ε

−1

α− 1
ln

[∫
dx

(
(λ+ µε(x))

α− 1

α
C

)
p(x)

]
=

∂

∂ε

−1

α− 1
ln

[(
(λ+ µε)

α− 1

α
C

)]
1

kBT
=
−1

α− 1

1

(λ+ µε)
µ

λ+ µε

kBT
=

−1

(α− 1)
µ

µ =
−λ
kBT

1
1

(α−1) + ε
kBT

[0.5 Points]

d) We want to prove:

lim
α→1

Sα = S

We use the de l’Hôpital’s rule lim
x→1

f(x)
g(x) = lim

x→1

f ′(x)
g′(x) with f(x) = − ln

[∫
dx p(x)α

]
and g(x) = α − 1.

We obtain:

lim
α→1

Sα = lim
α→1

∂
∂α

∫
dx p(x)α∫

dx p(x)α
[0.5 Points]

= − lim
α→1

∫
dx ∂

∂αe
ln(p(x)α)∫

dx p(x)α

= − lim
α→1

∫
dx ∂

∂αe
α ln(p(x))∫

dx p(x)α
[0.5 Points]

= − lim
α→1

∫
dx ln (p(x)) eα ln(p(x))∫

dx p(x)α
[0.5 Points]

= − lim
α→1

∫
dx ln (p(x)) p(x)α∫

dx p(x)α

=

∫
dx ln (p(x)) p(x) [0.5 Points]
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e) Really difficult to answer. All creative and correct thoughts will get 2 points.
One idea: Thermodynamics is a theory of information about statistical systems, and Shannon’s
entropy is the only one to fulfil the law of conditional probability S(y|x) + S(x) = S(x, y) and is
therefore compatible with Bayes’ law p(y|x) · p(x) = p(x, y) with S = 〈ln p〉. Another idea would
be to argue, that thermodynamic laws of nature show an exponential scaling and not a power law
scaling.
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Problem 7

Active Brownian Particle
Prof. Dr. Michael Schmiedeberg – Institut für Theoretische Physik 1, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Erlangen, Germany

Background Self-propelled particles, also known as active particles, are popular as a model
system for an intrinsically non-equilibrium system in statistical physics. Furthermore, they are
used to mimic biological or socio-economic systems like colonies of swimming bacteria, fish
schools, animal flocks, swarms of birds or insects, or crowds of humans.

In this exercise we consider the motion of a single active particle in a viscous environment in two
dimensions. To be specific, we consider a polar point particle at position ~r(t) that points into a di-
rection given by a unit vector û(t) = (cosϕ(t), sinϕ(t)) where the angle ϕ(t) is given with respect to
some arbitrary reference direction. The particle is subject to Brownian motion due to its surround-
ing. The activity is given by a force that acts along the direction of the particle, i.e., ~Fa(t) = faû(t)
with a constant amplitude fa.

Due to the temperature, thermal forces ~FT (t) and torques TT (t) act on the particle (details are
specified later). Note that only rotations in the plane are considered, i.e., if considered as vectors
all quantities related to rotations are perpendicular to the plane of motion.

Any motion of the particle is retarded by a friction force and torque given by Stokes’ law and can
be assumed to be ~FS(t) = −γ~̇r(t) and TS = −γRϕ̇(t) with friction constants γ and γR.

The mass of the particle is m and the moment of inertia is I.

a) [1 point] Write down the equations of motion for the position ~r(t) and angleϕ(t) given the forces
and torques specified above.

b) [2 points] Without thermal forces or torques (this includes TS(0) = −γRϕ̇(0) = 0), calculate
the velocity ~̇r(t) of the particle if the initial velocity is ~̇r(t = 0) = v0û0 and the initial direction
û(t = 0) = û0. Explain your result phenomenologically.

c) [1 point] Determine conditions for the time t depending on the constants mentioned above such
that the equations of motions from Task a) can be approximated by

γ~̇r(t) = faû(t) + ~FT (t),

γRϕ̇(t) = TT (t).

Motivate your choice for the conditions. A strict calculation is not required. This is called the over-
damped limit and will be used for the following tasks.

d) [2 points] Consider the overdamped equations given in Task (c). The thermal force and torque
are considered to be random (corresponding to random Brownian kicks from the surrounding). If
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averaged over many runs one finds 〈
~FT (t)

〉
= ~0,

〈TT (t)〉 = 0,〈
FT,j(t)FT,k(t

′)
〉

= 2γkBTδjkδ(t− t′),〈
TT (t)TT (t′)

〉
= 2γRkBTδ(t− t′),

where kBT corresponds to the thermal energy of the surrounding and j, k in the third line indicate
the spatial component of the thermal forces.
Calculate 〈ϕ(t)〉 and

〈
ϕ2(t)

〉
in case ϕ(t = 0) = 0 and ϕ̇(t = 0) = 0.

e) [4 points] Consider that the system at t = 0 has relaxed into a state, where it is properly described
by the overdamped equations given in Task (c). Calculate the mean positions 〈~r(t)〉 and mean-

squared displacement
〈
|~r(t)|2

〉
for small times t� 1, i.e., up until terms with t2, in case~r(t = 0) = ~0,

~̇r(t = 0) = faû0/γ, ϕ(t = 0) = 0, and ϕ̇(t = 0) = 0.
Discuss the typical distance that a particle travels before it changes its direction significantly. For
that consider first the time treverse it takes before the velocity changes from the initial condition
~̇r(t = 0) = faû0/γ to ~̇r(t = treverse) = −faû0/γ. Note that the time scale related to this typical
distance can be seen as the limit of validity of the small-time approximation used here.

Hint: First calculate 〈û(t)〉 (up to first order in t required) and 〈û(t)û(t′)〉 (only zeroth order in t required).
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Solution

a) Newton’s equations:

m~̈r(t) = −γ~̇r(t) + faû(t) + ~FT (t), [0.5 Points]

Iϕ̈(t) = −γRϕ̇(t) + TT (t). [0.5 Points]

b) Without thermal torques the vector û(t) remains constant, i.e., û(t) = û0. The equation m~̈r(t) =
−γ~̇r(t) + faû0 is solved by

~̇r(t) = ~A exp(−tγ/m) + faû0/γ. [0.5 Points]

The initial condition is fulfilled for ~A = (v0 − fa/γ) û0 [0.5 Points].
Therefore, in the long-time limit the velocity faû0/γ is approached [0.5 Points]. In case the initial
velocity differs from this final velocity, the particle is accelerated or decelerated until the final ve-
locity is reached [0.5 Points]. Additional comments: The approach to the final velocity is given by an
exponential decay and the time-scale of the approach is given by m/γ.

c) The overdamped limit is valid in the long-time limit, i.e., for t > m/γ and t > I/γR [0.5 Points].
For this choice the inertial terms can be neglected as they are smaller than the friction terms [0.5
Points].

d) From γRϕ̇(t) = TT (t) one finds ϕ(t) =
∫ t

0 dt
′TT (t′)/γR and therefore 〈ϕ(t)〉 =

∫ t
0 dt

′ 〈TT (t′)〉 /γR =
0 [0.5 Points]. Furthermore,〈

(ϕ(t))2
〉

=
1

γ2
R

〈∫ t

0
dt′TT (t′)

∫ t

0
dt′′TT (t′′)

〉
=

1

γ2
R

∫ t

0
dt′
∫ t

0
dt′′
〈
TT (t′)TT (t′′)

〉
[0.5 Points]

=
1

γ2
R

∫ t

0
dt′
∫ t

0
dt′′2γRkBTδ(t

′ − t′′)

=
1

γ2
R

∫ t

0
dt′2γRkBT [0.5 Points]

=
2kBT

γR
t. [0.5 Points]

e)

〈û(t)〉 = 〈(cosϕ(t), sinϕ(t))〉
≈
〈(

1− ϕ2(t)/2, ϕ(t)
)〉

=
(
1−

〈
ϕ2(t)

〉
/2, 〈ϕ(t)〉

)
=

(
1− kBT

γR
t, 0

)
[1 Points]

Due to γ~̇r(t) = faû(t) + ~FT (t) it is ~r(t) =
∫ t

0 dt
′
(
faû(t′) + ~FT (t′)

)
/γ and therefore
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〈~r(t)〉 = fa
∫ t

0 dt
′ 〈û(t′)〉 /γ + 0. As a consequence 〈y(t)〉 = 0 and

〈x(t)〉 = fa

∫ t

0
dt′
(

1− kBT

γR
t

)
/γ

=
fa
γ
t− fakBT

2γγR
t2. [0.5 Points]

Therefore, the typical time to change the direction is γR
kBT

. As the particle travels with a mean

velocity fa
γ the typical length (persistence length) is faγR

γkBT
[0.5 Points]. (Side note: You might define

the persistence length with some additional constant prefactor like ln(2). That is fine as well, as no
further details are given in the exercise.)

Furthermore, 〈
û(t)û(t′)

〉
≈ 1−

〈(
ϕ(t)− ϕ(t′)

)2
/2
〉
≈ 1. [0.5 Points]

Due to γ~̇r(t) = faû(t) + ~FT (t) it is ~r(t) =
∫ t

0 dt
′
(
faû(t′) + ~FT (t′)

)
/γ and therefore (the terms odd in

û(t) and ~FT (t′) are left away as it is 0 after taking the average)〈
|~r(t)|2

〉
=
f2
a

γ2

∫ t

0
dt′
∫ t

0
dt′′
〈
û(t′)û(t′′)

〉
+

1

γ2

∫ t

0
dt′
∫ t

0
dt′′
〈
~FT (t′)~FT (t′′)

〉
[0.5 Points]

=
f2
a

γ2

∫ t

0
dt′
∫ t

0
dt′′1 +

4kBT

γ

∫ t

0
dt′
∫ t

0
dt′′δ(t′ − t′′) [0.5 Points]

=
f2
a

γ2
t2 +

4kBT

γ
t [0.5 Points]

Further corrections are at least of order t3.
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Problem 8

Quantum Convolutional Neural Network
Dr. Petr Zapletal, Timo Eckstein, and Prof. Dr. Michael J. Hartmann – Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Background Convolutional neural networks are artificial neural networks, which can be ex-
ploited for image recognition. They can process rasterized images and classify whether, for ex-
ample, a cat or a dog is depicted in a particular image. Quantum convolutional neural networks
(QCNNs) are analogous to their classical counterparts and they are designed to recognize quan-
tum phases of matter, which are characterized by long-range quantum correlations. QCNNs pro-
cess quantum states in order to determine whether they belong to a given quantum phase. Here
we consider a minimal example of a QCNN, which processes a quantum state of four qubits. The
Hilbert space of each qubit is spanned by two quantum states |0〉i and |1〉i for i = 1, 2, 3, 4. The
QCNN is based on a quantum circuit depicted in Fig. 8.1, which consists of a convolutional (C)
layer, a pooling (P) layer and the measurement of qubits 1 and 4 at the end of the circuit. In
the C layer, a translationally invariant unitary transformation UC consisting of CZ gates between
neighboring qubits is performed. In the P layer, a unitary transformation UP consisting of two
CNOT gates is performed and qubit 2 as well as 3 are discarded such that only qubits 1 and 4 are
measured at the end of the circuit.

UC UP
• • X

• •
• •
• • X

Figure 8.1 Quantum convolutional neural network consisting of the convolutional layer UC, the pooling layer
UP and the measurement of qubits 1 and 4. Horizontal lines represent qubits, which are evolved in the circuit
from left to right. CZ gates are depicted as vertical lines acting on two qubits denoted by dots. CNOT gates
are depicted as vertical lines with a control qubit denoted by a dot and a target qubit denoted by a cross.

A CNOTij gate with a control qubit i and a target qubit j performs a bit flip |0〉j ↔ |1〉j on the target
qubit if the control qubit is in the state |1〉i and it does not perform any transformation if the control
qubit is in the state |0〉i. A CZij gate acting on qubits i and j induces a phase shift |11〉ij → −|11〉ij if
the two qubits are in the state |11〉ij and it does not perform any transformation otherwise, where
we use the notation |ψθ〉ij = |ψ〉i ⊗ |θ〉j for the tensor product of two states.
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The QCNN is designed to recognize the (Z2 × Z2) symmetry-protected topological (SPT) phase.
The states belonging to this quantum phase are characterized by a non-vanishing expectation
value of so-called string order parameters. For the four-qubit system considered here, the string
order parameters are O1 = X1X3Z4 and O2 = Z1X2X4. For an input state |ψ〉, the QCNN output
xQCNN = 〈ψ|U †X1+X4

2 U |ψ〉 is the expectation value of (X1 + X4)/2 measured after the QCNN cir-
cuit U = UPUC . Hence, the QCNN output corresponds to the expectation value 〈ψ|O |ψ〉 of the
observable O = U †X1+X4

2 U measured directly on the input state |ψ〉.

a) [2 points] Prove the following gate identities

Z†iXiZi = −Xi, (8.1)

[CZij , Zi] = [CZij , Zj ] = 0, (8.2)

CZ†ijXiCZij = XiZj , (8.3)

CZ†ijXjCZij = ZiXj , (8.4)

CNOT†ijXiCNOTij = XiXj , (8.5)

whereXi and Zi are Pauli operators with eigenstates |±〉i = (|0〉i ± |1〉i)/
√

2 and |0/1〉i, respectively,
and [A,B] = AB −BA is the commutator.
Hint: use the matrix representation of the quantum states

1
0
0
0

↔ |00〉,


0
1
0
0

↔ |01〉,


0
0
1
0

↔ |10〉,


0
0
0
1

↔ |11〉, (8.6)

and Pauli operators [
0 1
1 0

]
↔ X,

[
1 0
0 −1

]
↔ Z. (8.7)

b) [1 point] Use identities proven in part 1) to express the observable O in terms of the string order
parameters O1 and O2 defined above.

c) [1 point] We now consider the so-called cluster state |C〉 which is uniquely defined as an eigen-
state of so-called stabilizer generators S1 = X1Z2, S2 = Z1X2Z3, S3 = Z2X3Z4, and S4 = Z3X4 with
the eigenvalue +1 for all four stabilizer generators. Show that the circuit UCZ

UCZ

|+〉 •
|+〉 • •
|+〉 • •
|+〉 •
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consisting of CZ gates between neighboring qubits, prepares the cluster state from the product
state |+ + ++〉 = |+〉1 ⊗ |+〉2 ⊗ |+〉3 ⊗ |+〉4.

d) [1 point] The QCNN output xQCNN is equal to unity for states belonging to the SPT phase and it
is equal to zero for states that do not belong to the SPT phase. Using the equivalence xQCNN = 〈O〉,
determine whether the cluster state |C〉 and states |P 〉 = |+ + ++〉 as well as |A〉 = |+−+−〉 belong
to the SPT phase.

e) [2 points] An important feature of the QCNN is that it can tolerate certain type of perturbations

P such that a perturbed state
∣∣∣ψ̃〉 = P |ψ〉 retains the same QCNN output xQCNN as an unperturbed

state |ψ〉 for any |ψ〉. Determine, which of the single qubit perturbations

P ∈ {X1, X2, X3, X4, Y1, Y2, Y3, Y4, Z1, Z2, Z3, Z4} (8.8)

are tolerated by the QCNN, where the matrix representation of the Pauli Yj operator is

Yj ↔
[

0 −i
i 0

]
. (8.9)

f ) [3 points] Find all states belonging to the SPT phase that yield the QCNN output xQCNN = 1.
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Solution

a) We prove the gate identities using the matrix representation

Z†iXiZi ↔
[

1 0
0 −1

] [
0 1
1 0

] [
1 0
0 −1

]
= (−1)

[
0 1
1 0

]
↔ −X, (8.10)

[CZij , Zi]↔


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

−


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = 0

(8.11)

[CZij , Zj ]↔


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

−


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = 0

(8.12)

CZ†ijXiCZij ↔


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

↔ XiZj ,

(8.13)

CZ†ijXjCZij ↔


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

↔ ZiXj ,

(8.14)

CNOT†ijXiCNOTij ↔


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

↔ XiXj .

(8.15)

Alternatively, one can prove Eq. (8.1) by using thatZi andXi anti-commute (the anti-commutation
does not need to be proven) and showing

Z†iXiZi = −Z†iZiXi = −Xi. (8.16)

To prove Eq. (8.2), one can alternatively argue that Zi, Zj and CZij are all diagonal in the computa-
tional basis and thus mutually commute with each other.

2 points in total: half a point for proving Eq. 8.1; half a point for proving Eq. 8.2; half a point for
proving Eqs. 8.3 and (8.4); half a point for proving Eq. 8.5.
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b) We use gate identities (8.3), (8.4), and (8.5) and that Z2
i = 1 to show that

O = U †CU
†
P

X1 +X4

2
UPUC =

1

2

(
U †CX1X3UC + U †CX2X4UC

)
(8.17)

=
1

2

(
X1Z

2
2X3Z4 + Z1X2Z

2
3X4

)
=

1

2
(X1X3Z4 + Z1X2X4) =

1

2
(O1 + O2) . (8.18)

1 point in total: half a point for correctly using the identities (8.3), (8.4); another half a point for
correctly using the identity (8.5) and Z2

i = 1.

c) We use gate identities (8.2), (8.3), and (8.4), that UCZU
†
CZ = 1, that Z2

i = 1 and thatXi |+〉i = |+〉i
to show that

S1 |C〉 = UCZU
†
CZX1Z2UCZ |+ + ++〉 = UCZX1Z

2
2 |+ + ++〉 = UCZ |+ + ++〉 = |C〉 , (8.19)

S2 |C〉 = UCZU
†
CZZ1X2Z3UCZ |+ + ++〉 = UCZZ

2
1X2Z

2
3 |+ + ++〉 = U CZ |+ + ++〉 = |C〉 , (8.20)

S3 |C〉 = UCZU
†
CZZ2X3Z4UCZ |+ + ++〉 = UCZZ

2
2X3Z

2
4 |+ + ++〉 = UCZ |+ + ++〉 = |C〉 , (8.21)

S4 |C〉 = UCZU
†
CZZ3X4UCZ |+ + ++〉 = UCZZ

2
3X4 |+ + ++〉 = UCZ |+ + ++〉 = |C〉 . (8.22)

We conclude that the state UCZ |+ + ++〉 prepared from the product state |+ + ++〉 by the circuit
UCZ is an eigenstate with the eigenvalue +1 of all four stabilizer generators and it is thus the cluster
state.

1 point in total for showing that the cluster state is an eigenstate with the eigenvalue +1 of all four
stabilizer generators: half a point for transforming the stabilizer generators according to UCZ; an-
other half a point for using Z2

i = 1 and that Xi |+〉i = |+〉i to complete the calculations.

d) We start by using that the cluster state is the +1 eigenstate of the four stabilizer generators to
show that

O1 |C〉 = X1Z2Z2X3Z4 |C〉 = S1S3 |C〉 = |C〉 , (8.23)

O2 |C〉 = Z1X2Z3Z3X4 |C〉 = S2S4 |C〉 = |C〉 , (8.24)

from which it follows that

xQCNN = 〈C| O1 + O2

2
|C〉 = 〈C|C〉 = 1, (8.25)

and that the cluster state belongs to the SPT phase. For the other two states, we obtain

xQCNN = 〈+ + ++| O1 + O2

2
|+ + ++〉 =

1

2
(〈+ + ++|+ + +−〉+ 〈+ + ++|−+ ++〉) = 0, (8.26)

xQCNN = 〈+−+−| O1 + O2

2
|+−+−〉 =

1

2
(〈+−+−|+−++〉+ 〈+−+−|− −+−〉) = 0, (8.27)

showing that they do not belong to the SPT phase, where we used that Xi |+〉i = |+〉i and Zi |+〉i =
|−〉i.
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1 point in total: half a point for showing that the cluster state belongs to the SPT phase; another
half a point for showing that the other two states do not belong to the SPT phase.

e) For a given perturbation P, the QCNN outputs 〈ψ|O |ψ〉 and 〈ψ|P†OP |ψ〉 for a perturbed state
P |ψ〉 and an unperturbed state |ψ〉, respectively, coincide for any |ψ〉 if and only if P†OP = O,
which is equivalent to [O,P] = 0. We start by recalling that [σαi , σ

β
j ] = 0 for i 6= j as well as any

α = X,Y, Z and β = X,Y, Z and that σαi σ
β
i = −σβi σαi for any α 6= β, where σXi = Xi, σYi = Yi, and

σZi = Zi. The string order parameters O1 and O2 either commute or anti-commute with the single
qubit perturbations P. For example

X1O1 = X1X1X3Z4 = X1X3Z4X1 = O1X1, (8.28)

X1O2 = X1Z1X2X4 = −Z1X2X4X1 = −O2X1. (8.29)

AsO is a sum of the string order parametersO1 andO2, only perturbations commuting with bothO1

and O2 are tolerated by the QCNN. We thus conclude that only perturbations P = X2 and P = X3

are tolerated by the QCNN. All other single qubit perturbations modify the QCNN output

X†1OX1 =
O1 −O2

2
, (8.30)

X†4OX4 = −O1 −O2

2
, (8.31)

Y †1 OY1 = −O1 + O2

2
, (8.32)

Y †2 OY2 =
O1 −O2

2
, (8.33)

Y †3 OY3 = −O1 −O2

2
, (8.34)

Y †4 OY4 = −O1 + O2

2
, (8.35)

Z†1OZ1 = −O1 −O2

2
, (8.36)

Z†2OZ2 =
O1 −O2

2
, (8.37)

Z†3OZ3 = −O1 −O2

2
, (8.38)

Z†4OZ4 =
O1 −O2

2
. (8.39)

where we used the commutation relations stated above and that (σαi )2 = 1. For example, the per-
turbed cluster state Z2/3 |C〉 yields a vanishing QCNN output

xQCNN = 〈C|Z†2/3OZ2/3 |C〉 = 0. (8.40)

2 points in total: half a point for realizing that tolerated perturbations commute with O; half a point
for realizing that O1 and O2 either commute or anti-commute with all perturbations; one point for
correctly identifying tolerated perturbations.

f ) In order to yield the QCNN output xQCNN = 1, a state needs to be a +1 eigenstate of both O1 and
O2. Using identities (8.2), (8.3) and (8.4) as well as that Z2

i = 1, we show that the unitary UCZ trans-

42 PLANCKS 2022 Problem 8



forms the string order parameters U †CZO1UCZ = X1X3 and U †CZO2UCZ = X2X4 into diagonal oper-
ators in the X-basis. Inspecting X-basis eigenstates, we find that four states |+ + ++〉, |−+−+〉,
|+−+−〉, and |− − −−〉 are eigenstates with the eigenvalue +1 for both diagonal operators X1X3

and X2X4. All other X-basis eigenstates have at least one eigenvalue−1. We thus obtain

O1UCZ |+ + ++〉 = UCZU
†
CZO1UCZ |+ + ++〉 = UCZX1X3 |+ + ++〉 = UCZ |+ + ++〉 , (8.41)

O1UCZ |−+−+〉 = UCZU
†
CZO1UCZ |−+−+〉 = UCZX1X3 |−+−+〉 = UCZ |−+−+〉 , (8.42)

O1UCZ |+−+−〉 = UCZU
†
CZO1UCZ |+−+−〉 = UCZX1X3 |+−+−〉 = UCZ |+−+−〉 , (8.43)

O1UCZ |− − −−〉 = UCZU
†
CZO1UCZ |− − −−〉 = UCZX1X3 |− − −−〉 = UCZ |− − −−〉 , (8.44)

O2UCZ |+ + ++〉 = UCZU
†
CZO2UCZ |+ + ++〉 = UCZX2X4 |+ + ++〉 = UCZ |+ + ++〉 , (8.45)

O2UCZ |−+−+〉 = UCZU
†
CZO2UCZ |−+−+〉 = UCZX2X4 |−+−+〉 = UCZ |−+−+〉 , (8.46)

O2UCZ |+−+−〉 = UCZU
†
CZO2UCZ |+−+−〉 = UCZX2X4 |+−+−〉 = UCZ |+−+−〉 , (8.47)

O2UCZ |− − −−〉 = UCZU
†
CZO2UCZ |− − −−〉 = UCZX2X4 |− − −−〉 = UCZ |− − −−〉 , (8.48)

showing that |C1〉 = |C〉 = UCZ |+ + ++〉, |C2〉 = UCZ |−+−+〉, |C3〉 = UCZ |+−+−〉, and |C4〉 =
UCZ |− − −−〉 are four eigenstates of the string order parameters with the eigenvalue +1 for both
string order parameters. Thanks to the mapping onto operators X1X3 and X2X4, we know that
there are no other +1 eigenstates of both string order parameters and that the eigenstates are or-
thogonal 〈Ci|Ck〉 = δij , where δij is the Kronecker delta. We thus conclude that states |Ci〉, for
i = 1, 2, 3, 4, form a basis of the subspace spanned by all states belonging to the SPT phase yielding
xQCNN = 1. That means that any state |ψ〉 with xQCNN = 1 can be expressed as a superposition
|ψ〉 =

∑4
i=1 γi |Ci〉.

Alternative solution: we first realize that the string order parameters are parity operators O2
1 =

O2
2 = 1. Each of the parity operators splits the Hilbert space into two subspaces of equal dimen-

sions spanned by +1 and −1 eigenstates. We thus conclude that the subspace of their common
+1 eigenstates has the dimension d = 24/22 = 4. Using the result of part 5) that perturbations X2

and X3 do not modify the QCNN output, we deduce that states |C2〉 = X2 |C〉, |C3〉 = X3 |C〉, and
|C4〉 = X2X3 |C〉 yield the QCNN output xQCNN = 1. At the same time, these states are orthogonal
to the cluster state

〈C|C2〉 = 〈+ + ++|U †CZX2UCZ |+ + ++〉 = 〈+ + ++|Z1X2Z3 |+ + ++〉 = 0 (8.49)

〈C|C3〉 = 〈+ + ++|U †CZX3UCZ |+ + ++〉 = 〈+ + ++|Z2X3Z4 |+ + ++〉 = 0 (8.50)

〈C|C4〉 = 〈+ + ++|U †CZX2X3UCZ |+ + ++〉 = 〈+ + ++|Z1X2Z2Z3X3Z4 |+ + ++〉 = 0. (8.51)

Analogously, it can be shown that they are orthogonal to each other. We thus conclude that states
|C〉1 = |C〉, |C〉2, |C〉3, and |C〉4 form a basis of the four-dimensional subspace of all states belong-
ing to the SPT phase yielding xQCNN = 1.

3 points in total: half a point for realizing that +1 eigenstates of both O1 and O2 yield xQCNN =
1; one point for finding four states |Ci〉 yielding xQCNN = 1; half a point for showing that they
are orthogonal (either by the mapping onto X-basis eigenstates or by a direct inspection); one
point for arguing that any state |ψ〉 with xQCNN = 1 can be expressed as a superposition |ψ〉 =∑4

i=1 γi |Ci〉 (either by mapping O1 and O2 onto diagonal operators and inspecting their eigenstates
or by identifying the dimension of the common +1 subspace of parity operators O1 and O2).
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Problem 9

Hawking Radiation, the Logarithmic Phase Singularity, and the
Inverted Harmonic Oscillator
Freyja Ullinger1,2, Dr. Matthias Zimmermann2, and Prof. Dr. Wolfgang P. Schleich1 – 1Institut
für Quantenphysik, Ulm University, 2Institute of Quantum Technologies, German Aerospace Cen-
ter (DLR)

Background A spacetime singularity is located at the center of a black hole and surrounded
by an event horizon, separating spacetime into two disjunct regions: one of them accessible to
an outside observer and one that is not. At the event horizon, a logarithmic phase singularity
emerges in the mode functions of a massless scalar field, being characteristic for Hawking radia-
tion emitted by the black hole.

There are many situations when physical systems display phenomena connected to black hole
evaporation. They range from acceleration radiation over the presence of a sonic horizon for
sound waves, the quantum catastrophe of slow light and Bose-Einstein condensates, to setups
employing water waves. Insight into this plethora of physical systems can be provided by simple
models that cover the main features of the underlying effects. In view of Hawking radiation such
an elementary model is the inverted harmonic oscillator.

Overview
In the first part of this exercise, we consider a classical particle of mass m exposed to an inverted
harmonic oscillator of steepness ω > 0, as described by the potential

V (x) = −1

2
mω2x2 (9.1)

which depends on the coordinate x and is depicted in Fig. 9.1. You will show that, similar to the
event horizons of a black hole, also an inverted harmonic oscillator displays horizons, which are
however located in phase space instead of spacetime.

Figure 9.1 The inverted harmonic oscillator potential V (x), Eq. (9.1), as a function of the position x. For each
energy E we depict two cases corresponding to an incoming classical particle from the left or right, respectively.
A classical particle with negative energy E < 0 (red and orange lines) is reflected at the potential barrier. On
the contrary, a particle with positive energy E > 0 (blue and green lines) is able to surpass it. Figure reprinted
from F. Ullinger et al., AVS Quantum Sci. 4, 024402 (2022) under license CC BY 4.0.
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Next, we turn to the quantum system of an inverted oscillator and analyze its properties. In par-
ticular, you will reveal a logarithmic phase singularity in this system and demonstrate that it causes
a transmission and reflection coefficient which resembles a very particular quantum statistics.

Afterwards, we identify a logarithmic phase singularity emerging in the mode functions of an
electromagnetic field at the event horizon of a black hole. You will show that this particular singu-
larity is a characteristic feature of Hawking radiation.

As a result of your efforts, you will get a glimpse into the intriguing similarities between Hawk-
ing radiation emitted at the event horizon of a black hole and the simple system of an inverted
harmonic oscillator.

a) [1.5 points] First, we consider a one-dimensional inverted harmonic oscillator with steepness ω
as characterized by the potential V (x), Eq. (9.1), displayed in Fig. 9.1. In this system, the dynamics
of a classical particle of mass m is governed by the Hamiltonian

H(x, p) =
p2

2m
− 1

2
mω2x2 (9.2)

with position x and momentum p. Since the Hamiltonian H(x, p), Eq. (9.2), is time-independent,
each classical trajectory is associated with a particular energy E = H(x0, p0) as determined by the
initial conditions x(0) = x0 and p(0) = p0 for the respective motion at time t = 0.

1. Identify in a sketch of phase space, i.e. the two-dimensional space of position x and momen-
tum p, the regions with phase space trajectories of energy (i) E < 0, (ii) E = 0, and (iii) E > 0.

2. Sketch a phase space trajectory {x(t), p(t)} in each quadrant of phase space. How many dis-
tinct trajectories exist for a given energy E?

Hint: In the first task, the relevant quadrants of phase space are identified as regions associated with different
energy domains.

b) [1.5 points] In order to make contact with phenomena familiar from black hole evaporation, we
introduce the horizon coordinates

ξ ≡
√
mω

2~

(
x− p

mω

)
(9.3)

and

η ≡
√
mω

2~

(
x+

p

mω

)
, (9.4)

where ~ denotes the reduced Planck constant. We label the coordinates ξ = 0 and η = 0 as the
horizons in phase space. In this particular basis the Hamiltonian H , Eq. (9.2), takes the form

H = −~ω
2

(ξη + ηξ) . (9.5)

1. Consider a classical particle of mass m in the inverted harmonic oscillator that is initially
located at the coordinate ξ0 = ξ(0) at time t = 0. Determine the time T1 which the particle
requires to arrive at the coordinate ξ1 = ξ(T1) as a function of the initial and final coordinate.
For this purpose, solve the equations of motion

ξ̇ =
1

~
∂H

∂η
, (9.6)

η̇ = −1

~
∂H

∂ξ
. (9.7)

Problem 9 PLANCKS 2022 45



2. How long does it take for the particle to reach the horizon ξ = 0 if ξ0 6= 0? How does your
result depend on the value of η0 = η(0) at time t = 0?

3. What happens to the horizons in phase space in the limitω → 0? What does this tell you about
the allowed values of the energy E in this limit? Support your statements with the help of a
phase space sketch.

c) [0.5 points] In the following, we consider a quantum particle of mass m subject to an inverted
harmonic oscillator potential V (x), Eq. (9.1). For our analysis, we make use of the operators

ξ̂ ≡
√
mω

2~

(
x̂− p̂

mω

)
(9.8)

and

η̂ ≡
√
mω

2~

(
x̂+

p̂

mω

)
, (9.9)

defined in terms of the position operator x̂ and the momentum operator p̂.

Determine the commutator
[
ξ̂, η̂
]

, provided that the position operator x̂ and the momentum

operator p̂ satisfy the standard commutation relation. What does this tell you about the relationship
between the operators ξ̂ and η̂?

d) [1 point] In analogy to the classical situation, see Eq. (9.5), the quantum mechanical Hamilto-
nian for an inverted harmonic oscillator takes the form

Ĥ = −~ω
2

(
ξ̂η̂ + η̂ξ̂

)
. (9.10)

We are now interested in the energy eigenstates |ε〉 of this system which are solutions of the station-
ary Schrödinger equation

Ĥ |ε〉 = ~ωε |ε〉 (9.11)

with real-valued dimensionless energy ε.
By making use of the ξ-representation, show for ξ 6= 0 that the two degenerate wave functions

Ψ±ε (ξ) =
1√

2π |ξ|
exp (−iε ln |ξ|) Θ(±ξ) (9.12)

are solutions of Eq. (9.11), which are governed by a logarithmic phase singularity at the horizon
ξ = 0 in phase space. Here we have introduced the Heaviside step function

Θ(x) ≡

{
1, x ≥ 0,

0, x < 0.
(9.13)

Hint: Analogous to the position representation, the ξ-representation Ψ±ε (ξ) = 〈ξ|Ψ±ε 〉 of a quantum state
is defined by making use of the eigenstates |ξ〉 of the operator ξ̂, Eq. (9.8), satisfying the eigenvalue equation
ξ̂ |ξ〉 = ξ |ξ〉.

e) [0.5 points] By solving Eq. (9.11), determine the degenerate eigenstates |Φ±ε 〉with dimensionless
energy ε, whose η-representation 〈η|Φ±ε 〉 is proportional to the Heaviside step function Θ(±η).

f ) [1.5 points] Show that the quantum state |Ψ+
ε 〉, see Eq. (9.12), can be expressed as a superposition∣∣Ψ+

ε

〉
= S+(ε)

∣∣Φ+
ε

〉
+ S−(ε)

∣∣Φ−ε 〉 (9.14)
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of the states |Φ±ε 〉with energy-dependent coefficients

S±(ε) =
Γ
(

1
2 − iε

)
√

2π
exp

[
∓
(

iπ

4
+
πε

2

)]
, (9.15)

where Γ(z) denotes the Euler gamma function.
Hint: Make use of the η-representation of |Ψ+

ε 〉 and the relation 〈η|ξ〉 = 1√
2π

exp (−iξη) between the states

|ξ〉 and |η〉, which is a consequence of the commutation relation of the respective operators ξ̂ and η̂. Moreover,
use the definition of the Euler gamma function Γ(z) = eiπz/2

∫∞
0

dx xz−1e−ix with Γ(z) = Γ(z), where a bar
denotes the complex conjugate quantity.

g) [1.5 points] Finally, we take a closer look at the probability density |〈η|Ψ+
ε 〉|

2 for the state |Ψ+
ε 〉:

1. Determine the probability density |〈η|Ψ+
ε 〉|

2 with the help of the corresponding expressions
for the weights |S±(ε)|2.

Hint: Use the relation Γ
(
1
2 − iε

)
Γ
(
1
2 + iε

)
= π/ cosh(πε) for the Euler gamma function, where cosh(x) =

1
2 (ex + e−x).

2. Indeed, these weights correspond to the transmission T (ε) = |S−(ε)|2 and reflection coeffi-
cient R(ε) = |S+(ε)|2 of the inverted harmonic oscillator. Explain the dependency of these
coefficients on the dimensionless energy ε in comparison to the classical situation with the
help of Fig. 9.1 and your phase space sketch of part a) and b).

3. Which particular quantum statistics is resembled by the transmission T (ε) and reflection co-
efficient R(ε) of the inverted harmonic oscillator?

h) [1 point] In the presence of a black hole, the modes of a scalar quantum field Ψ0(t, r) with mass-
and spinless quanta can be determined by the Klein-Gordon equation in curved spacetime. For
spherical symmetric waves with vanishing angular momentum, the Klein-Gordon equation takes
the form (

− 1

c2

∂2

∂t2
+

∂2

∂r∗2

)
rΨ0 = 0 (9.16)

in the proximity of the black hole. Here t denotes the time and the radius r > rs, where the
Schwarzschild radius rs = 2GM/c2 is governed by the gravitational constantG, the speed of light c,
and the mass M of the black hole. Moreover, we have introduced the Regge-Wheeler tortoise coor-
dinate

r∗ = r + rs ln

∣∣∣∣1− r

rs

∣∣∣∣ . (9.17)

Make use of the separation of variables Ψ0(t, r) = q(t)R0(r) in Eq. (9.16) and determine the or-
dinary differential equations for the functions q(t) in the temporal domain and rR0(r) in the ra-
dial domain. Both equations are connected via the separation constant Ω2, where the frequency
Ω = ck depends linearly on the respective wave number k. Determine the two linear independent
solutions R±0,k(r) of the radial equation for a fixed value of k and show that these modes contain a
logarithmic singularity that emerges at the event horizon of the black hole located at r = rs.

i) [1 point] Central to the emission of Hawking radiation at the event horizon of a black hole is the
expansion of a plane wave of frequency ω in the Kruskal-Szekeres coordinates u and v, in terms of
modes of frequency Ω that display a logarithmic singularity at the event horizon r = rs and are as-
sociated with the Schwarzschild coordinates t and r∗. In particular, there exists the decomposition

1√
ω

e−iωu =

∫ ∞
0

dΩ′√
Ω′

(
αΩ′ωe−iΩ′ũ + β̄Ω′ωeiΩ′ũ

)
(9.18)
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with expansion coefficients αΩ′ω and βΩ′ω, where ũ = t − r∗. Moreover, β̄Ω′ω denotes the complex
conjugate of βΩ′ω. Here and in the following we make use of the convention c = 1.

1. Show that the expansion coefficient βΩω in Eq. (9.18) can be expressed as

βΩω =
1

2π

√
Ω

ω

∫ ∞
−∞

dũ eiωu+iΩũ. (9.19)

Evaluate the integral in Eq. (9.19) for Ω > 0 by using the relation ũ = −2rs ln
(
− u

2rs

)
.

Hint: Apply the definition δ(x) = 1
2π

∫∞
−∞ dy eixy of the Dirac delta function and recall the definition of

the Euler gamma function Γ(z) provided in part f).

2. With the help of Eq. (9.19), the mean number of particles emitted by the black hole as Hawking
radition in the mode with frequency Ω reads

NΩ =

∫ ∞
0

dω |βΩω|2 = n(Ω)

∫ ∞
0

dω

2πκω
. (9.20)

Determine the function n(Ω) in Eq. (9.20) by using the surface gravity κ = 1/(2rs) of the black
hole as a parameter. Compare this result to the one obtained in part g) for the inverted har-
monic oscillator.

Hint: Apply the identity Γ(−iz)Γ(iz) = π/ [z sinh(πz)] for the Euler gamma function, where sinh(πz) =
1
2 (eπz − e−πz).

In the end, we want to emphasize that a rigorous treatment of the emission of Hawking radiation
at the event horizon of a black hole is only possible within second quantization. However, this
exercise gives you some insight into the crucial role of the logarithmic phase singularity for the
occurrence of this fascinating phenomenon. Moreover, it reveals the astonishing similarities to the
simple quantum system of an inverted harmonic oscillator.
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Solution
Further details on the relation between the inverted harmonic oscillator and Hawking radiation
emitted by a black hole can be found in the following recently published article:
F. Ullinger, M. Zimmermann, and W.P. Schleich, ”The logarithmic phase singularity in the inverted
harmonic oscillator”, AVS Quantum Sci. 4, 024402 (2022).

a) [1.5 points]

1. In order to identify the respective energy domains in phase space, we make use of the Hamil-
tonian H(x, p), Eq. (9.2), and the relation E = H(x0, p0). Thus, we obtain

(i) E < 0 : 0 <
p20
2m −

1
2mω

2x2
0 ⇒ p0 > ±mωx0

(ii) E = 0 : 0 =
p20
2m −

1
2mω

2x2
0 ⇒ p0 = ±mωx0

(iii) E > 0 : 0 =
p20
2m −

1
2mω

2x2
0 ⇒ p0 < ±mωx0

The different domains in phase space are sketched in Fig. 9.2 (for simplicity, we have chosen
the parametersm = 1 and ω = 1). Since the HamiltonianH(x, p) is time-independent, the en-
ergyE is conserved. Thus, classical phase space trajectories {x(t), p(t)}with initial position x0

and momentum p0 will always stay in the same energy domain of phase space. Consequently,
the respective phase space trajectories cannot cross the horizons in phase space (thick black
lines), which are associated with the energy E = 0.

Figure 9.2 Different energy domains for the inverted harmonic oscillator in phase space with position x and
momentum p: (i) E < 0 (blue), (ii) E = 0 (black), (iii) E > 0 (red).

2. In order to sketch the trajectories in phase space we recall the Hamiltonian H(x, p), Eq. (9.2),
providing the energy

E =
p2

2m
− 1

2
mω2x2 (9.21)

which is a conserved quantity at any time t. As a consequence, we are able to express the
momentum

p±(x) = ±
√
m2ω2x2 + 2mE. (9.22)

as a function of the coordinate x. Consequently, for each energy E, there are two distinct
trajectories as shown in Fig. 9.2. Indeed, there we plot the trajectories for the same energies
as shown in Fig. 9.1 where this question has already been addressed.
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However, the case of a vanishing energy E = 0 is nontrivial. Based on Eq. (9.22) one might
guess that there are also two trajectories p±(x) = ±mωx corresponding to the two horizons
in phase space. However, since a particle traveling along one horizon cannot cross the other
horizon, there are four trajectories in this very particular case. Arguably, there is even a fifth
one, namely the one corresponding to a particle with E = 0 which always remains at the
origin of phase space. This issue will become clearer in part b).

Noticing and discussing this subtle point for the energyE = 0 will lead to a bonus of 0.5 points.
However, with the bonus it is not possible to exceed the maximally achievable points for the
entire exercise.

Figure 9.3 The phase space trajectores {x(t), p(t)} with the arrow indicating the direction of forward propaga-
tion in time t. Two distinct trajectories, corresponding to the same energy E are separated by the two horizons
ξ = 0 and η = 0, depicted along the diagonals, which divide phase space into four disjunct regions. On the half
plane η < 0, the phase space trajectories (blue and red) describe the motion of a particle that approaches the
potential barrier from the left, while for η > 0 the phase space trajectories (green and orange) correspond to an
incoming particle from the right. In the domain ηξ < 0 the trajectories (blue and green) belong to a particle
with positive energy E > 0, while in the domain ηξ > 0, the trajectories (red and orange) correspond to a
particle with negative energy E < 0. A particle with energy E = 0 travels along the horizons η = 0 or ξ = 0,
as indicated by the black arrows. Figure reprinted from F. Ullinger et al., AVS Quantum Sci. 4, 024402 (2022)
under license CC BY 4.0.

b) [1.5 points]

1. With the help of the HamiltonianH , Eq. (9.5), the equations of motion given by Eqs. (9.6) and
(9.7) take the form

ξ̇ = −ωξ, (9.23)

η̇ = ωη (9.24)

with the solutions

ξ(t) = ξ0e−ωt, (9.25)

η(t) = η0eωt. (9.26)

Thus, we obtain with ξ1 = ξ(T1) the time

T1 =
1

ω
ln

(
ξ0

ξ1

)
, (9.27)

which is governed by a logarithmic dependence.
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2. From Eq. (9.27) we observe that in the limit ξ1 → 0 the time T1 → ∞ in order to reach the
horizon ξ = 0. Indeed, for ξ0 < 0 we consider the limit ξ1 → 0− and for ξ0 > 0, we consider
the limit ξ1 → 0+ and recall that ω > 0. Thus, the horizon ξ = 0 cannot be reached within
a finite time from any initial coordinate ξ0 6= 0, that is from any point in phase space which
does not lie on the horizon ξ = 0. Obviously, this result is independent of the value of η0 (and
also valid for η0 = 0, that is the particle travels along the other horizon, see also the black lines
in Fig. 9.3).

As evident from the Hamiltonian H , Eq. (9.5), a particle traveling along the horizons ξ = 0 or
η = 0 possesses the energy E = 0. Thus, this result also gives a more detailed explanation for
the issue with the number of possible trajectories of energy E = 0 which was raised in part
a). Indeed, no classical particle can cross one of the two horizons in phase space in a finite
amount of time.

3. The horizons in phase space are determined by the conditions ξ = 0 and η = 0, or equiva-
lently, p = ±mωx according to Eqs. (9.3) and (9.4). In the limit ω → 0, we thus obtain p = 0.
Accordingly, both horizons align with the axis of vanishing momentum. As a consequence,
the energy domains with E < 0 disappear and only energies E ≥ 0 are allowed. Indeed, this
result is reasonable since for ω → 0 we obtain a free particle with energy E ≥ 0. The horizons
and the energy domains in phase in the limit ω → 0 are sketched in Fig. 9.4.

Figure 9.4 Change of the energy domains of the inverted harmonic oscillator in phase space as ω → 0.

c) [0.5 points] The commutation relation for the operators ξ̂ and η̂ reads[
ξ̂, η̂
]

=
mω

2~

[
x̂− p̂

mω
, x̂+

p̂

mω

]
(9.28)

=
mω

2~

(
1

mω
[x̂, p̂]− 1

mω
[p̂, x̂]

)
(9.29)

=
1

~
[x̂, p̂] (9.30)

= i, (9.31)

where we have used the standard commutation relation [x̂, p̂] = i~. Consequently, ξ̂ and η̂ are
canonically conjugate operators, analogous to the position operator x̂ and the momentum opera-
tor p̂. Thus, there exists an uncertainty relation with regard to these operators.

d) [1 point] We consider the stationary Schrödinger equation

− ~ω
2

(
ξ̂η̂ + η̂ξ̂

)
|ε〉 = ~ω |ε〉 . (9.32)
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Since ξ̂ and η̂ are canonically conjugate operators with [ξ̂, η̂] = i, see part c), we can use the replace-
ments ξ̂ → ξ and η̂ → −i ∂∂ξ when working in ξ-representation. The latter expression is analogous
to the position-representation of the momentum operator. As a consequence, Eq. (9.32) reads

~ωi

2

(
ξ

d

dξ
+

d

dξ
ξ

)
〈ξ|ε〉 = ~ωε 〈ξ|ε〉 . (9.33)

Next, we recast Eq. (9.33) as

ξ
d

dξ
〈ξ|ε〉 =

(
−1

2
− iε

)
〈ξ|ε〉 . (9.34)

First, we notice from the left-hand side of Eq. (9.34) that there is a problem when ξ → 0 (that is
when the horizon is approached). Thus, Eq. (9.34) can be solved separately in the domains ξ < 0
and ξ > 0. For this purpose, we recast Ψ±ε (ξ), given by Eq. (9.12), as

Ψ±ε (ξ) =
1√
2π
|ξ|−1/2−iε Θ(±ξ) (9.35)

Thus, we obtain
d

dξ
Ψ±ε (ξ) =

{
1√
2π

[
(−1

2 − iε)ξ−3/2−iεΘ(±ξ)
]
, ξ > 0,

1√
2π

[
−(−1

2 − iε)(−ξ)−3/2−iεΘ(±ξ)
]
, ξ < 0.

(9.36)

Consequently, we arrive at

ξ
d

dξ
Ψ±ε (ξ) =

(
−1

2
− iε

)
1√
2π
|ξ|−1/2−iε Θ(±ξ) (9.37)

for ξ 6= 0 and thus, Eq. (9.35), constitutes a solution of Eq. (9.34). However, due to the singularity,
this wave function is not continuous at the horizon ξ = 0.

e) [0.5 points] In order to determine the energy eigenstates |Φ±ε 〉we recall the commutator
[
ξ̂, η̂
]

= i.

Thus, the stationary Schrödinger equation (9.32) reads in η-representation

− ~ωi

2

(
η

d

dη
+

d

dη
η

)
〈η|ε〉 = ~ωε 〈η|ε〉 . (9.38)

Except of the minus sign in front of the right-hand side, Eq. (9.38) has the same form as Eq. (9.33).
By recalling the solutions Ψ±ε (ξ), Eq. (9.12), of Eq. (9.34) we identify the solutions

Φ±ε (η) =
1√

2π |η|
exp (iε ln |η|) Θ (±η) (9.39)

of Eq. (9.38), which are proportional to Θ(±η) and where the opposite sign appears in the front of
the logarithmic phase.

As consequence, we observe that there exist two sets of energy eigenstates |Ψ±ε 〉 and |Φ±ε 〉 with
energy ε, whose ξ- and η-representation have the same form except of a sign difference. This feature
is a consequence of the invariance of the Hamiltonian Ĥ , Eq. (9.10), with regard to an exchange of
the operators ξ̂ and η̂.

f ) [1.5 points] In order to express the state |Ψ+
ε 〉 as a superposition of the states |Φ+

ε 〉 and |Φ−ε 〉, we
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consider its η-representation and insert the identity in terms of the states |ξ〉:

〈
η
∣∣Ψ+

ε

〉
=

∫ ∞
−∞

dξ 〈η|ξ〉
〈
ξ
∣∣Ψ+

ε

〉
(9.40)

=

∫ ∞
−∞

dξ
1√
2π

exp(−iξη)
1√

2π |ξ|
exp (−iε ln |ξ|) Θ(ξ) (9.41)

=
1

2π

∫ ∞
0

dξ ξ−1/2−iεe−iξη, (9.42)

where we have made use of Eqs. (9.12).
Next, we apply the substitution x = ξη and arrive at

〈
η
∣∣Ψ+

ε

〉
=

1

2π

[
Θ(η)

∫ ∞
0

dx η−1

(
x

η

)−1/2−iε

e−ix + Θ(−η)

∫ −∞
0

dx η−1

(
x

η

)−1/2−iε

e−ix

]
(9.43)

=
1

2π

[
η−1/2+iεΘ(η)

∫ ∞
0

dx x−1/2−iεe−ix + (−η)−1/2+iεΘ(−η)

∫ ∞
0

dx x−1/2−iεeix

]
(9.44)

=
1

2π
Γ

(
1

2
− iε

)
|η|−1/2+iε

[
e−iπ(1/2−iε)/2Θ(η) + e+iπ(1/2−iε)Θ(−η)

]
(9.45)

=
Γ
(

1
2 − iε

)
√

2π
e−iπ/4−πε/2 〈η∣∣Φ+

ε

〉
+

Γ
(

1
2 − iε

)
√

2π
eiπ/4+πε/2

〈
η
∣∣Φ−ε 〉 , (9.46)

where we have used the definition of the Euler gamma function Γ(z).

g) [1.5 points]

1. With the help of Eq. (9.14), we obtain∣∣〈η∣∣Ψ+
ε

〉∣∣2 =
〈
η
∣∣Ψ+

ε

〉 〈
Ψ+
ε

∣∣η〉 (9.47)

= |S+(ε)|2
∣∣〈η∣∣Φ+

ε

〉∣∣2 + |S−(ε)|2
∣∣〈η∣∣Φ−ε 〉∣∣2 , (9.48)

where we have made use of the fact that 〈η|Φ+
ε 〉 〈Φ−ε |η〉 = 〈η|Φ−ε 〉 〈Φ+

ε |η〉 = 0. By using Eq. (9.15),
we can show that

|S±(ε)|2 =
1

2π
Γ

(
1

2
− iε

)
Γ

(
1

2
+ iε

)
exp (∓πε) (9.49)

=
1

2π

π

cosh(πε)
exp (∓πε) (9.50)

=
1

1 + e±2πε
. (9.51)

As a result, we arrive at ∣∣〈η∣∣Ψ+
ε

〉∣∣2 =
1

2π |η|

[
Θ(−η)

1 + e−2πε
+

Θ(η)

1 + e2πε

]
. (9.52)

2. A classical particle incoming from the left is reflected at the potential barrier of the inverted
harmonic oscillator for an energy E < 0, while it is transmitted for an energy E > 0. This
feature is evident from both Fig. 9.1 and the phase space trajectories. In contrary, a quantum
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particle can tunnel through the potential well, while its transmission T (ε) and reflection co-
efficients R(ε) are smooth functions of the energy ε. For ε = 0, we obtain T (0) = R(0) = 1/2,
that is transmission and reflection are equally likely. Only for very large energies ε → ±∞ we
recover the classical situation: T (ε→ +∞) = 1 andR(ε→ +∞) = 0 as well as T (ε→ −∞) = 0
and R(ε→ −∞) = 1.

3. Both the transmission and reflection coefficients of the inverted harmonic oscillator resemble
the Fermi-Dirac statistics

f(E) =
1

1 + e(E−µ)/kBT
(9.53)

with the total chemical potential µ. In contrast to thermodynamics where the characteristic
energy of the system is given by the product kBT of the Boltzmann constant kB and the tem-
perature T , it is the product hω of the Planck constant h and the steepness ω divided by 4π2,
which defines the energy scale of the inverted harmonic oscillator in the expression

|S±(ε)|2 =
1

1 + e±2πε
(9.54)

(remember that the energy was defined as ~ωε). This particular feature is a consequence of
the Fourier transform of a logarithmic phase singularity in combination with an amplitude
singularity.

h) [1 point] We apply the separation of variables Ψ0(t, r) = q(t)R0(r) and recast Eq. (9.16) in the
form

∂2
t q(t)

q(t)
= c2∂

2
r∗ [rR0(r)]

rR0(r)
. (9.55)

Since the left-hand side only depends on time t and the right hand-side only depends on the radius
r, and t and r are indpendent variables, both sides are equal to a separation constant which we
call Ω2. As a consequence, we obtain in the temporal domain the oscillator equation(

∂2

∂t2
+ Ω2

)
q(t) = 0 (9.56)

and in the radial direction, we arrive at the differential equation(
∂2

∂r∗2
+ k2

)
rR0(r) = 0 (9.57)

with k = Ω/c.
We focus on the radial equation (9.57) for which we identify the solutions

R±0,k(r) =
e±ikr∗

r
=

1

r
e
±ik

(
r+rs ln

∣∣∣1− r
rs

∣∣∣)
, (9.58)

where we have made use of the definition of r∗ given by Eq. (9.17). The mode functions R±0,k(r)
display a logarithmic phase singularity at the event horizon of the black hole located at r = rs. In
contrast to the energy eigenstates of the inverted harmonic oscillator, the functions R±0,k(r) only
display a phase singularity and no amplitude singularity at r = rs. This difference has dramatic
consequences as shown in part i).

In addition, the occupation of a particular mode can be analyzed by quantizing the temporal
Eq. (9.56), leading to the appearance of creation and annihilation operators which are familar from
the harmonic oscillator.

i) [1 point]
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1. First, we multiply the given decomposition by the factor exp (−iΩũ) and obtain

1√
ω

e−iωue−iΩũ =

∫ ∞
0

dΩ′√
Ω′

[
αΩ′ωe−i(Ω′+Ω)ũ + β̄Ω′ωei(Ω′−Ω)ũ

]
. (9.59)

Next, integrating both sides of the equation with regard to ũ yields

1√
ω

∫ ∞
−∞

dũ e−iωue−iΩũ = 2π

∫ ∞
0

dΩ′√
Ω′

[
αΩ′ωδ(Ω

′ + Ω) + β̄Ω′ωδ(Ω
′ − Ω)

]
. (9.60)

By evaluating the right-hand side for Ω > 0 we arrive at

1√
ω

∫ ∞
−∞

dũ e−iωue−iΩũ =
2π√

Ω
β̄Ωω (9.61)

or, equivalently,

βΩω =
1

2π

√
Ω

ω

∫ ∞
−∞

dũ eiωu+iΩũ. (9.62)

Next, the relation ũ = −2rs ln
(
− u

2rs

)
yields

dũ

du
= −2rs

u
(9.63)

and Eq. (9.62) takes the form

βΩω =
1

2π

√
Ω

ω

∫ 0

−∞
du eiωue

−2irsΩ ln
(
− u

2rs

)(
−2rs
u

)
(9.64)

=
1

2πω

√
Ω

ω

∫ ∞
0

ds e−is

(
s

2rsω

)−1−2irsΩ

(9.65)

with s = −ωu. By recalling the definition of the Euler gamma function Γ(z) we finally recast
Eq. (9.65) as

βΩω =
rs
π

√
Ω

ω
(2rsω)2irsΩ e−πrsΩΓ (−2irsΩ) . (9.66)

Indeed, we observe that it is again the Fourier transform of a logarithmic phase singularity
which leads to the appearance of the Euler gamma function.

2. First, we make use of our previous result, Eq. (9.66), and obtain∫ ∞
0

dω |βΩω|2 =
r2
s

π2

∫ ∞
0

dω

(
Ω

ω

)
e−2πrsΩΓ (−2irsΩ) Γ (2irsΩ) . (9.67)

Next, we apply the identity Γ(−iz)Γ(iz) = π/ [z sinh(πz)] and find∫ ∞
0

dω |βΩω|2 =
r2
sΩ

π2

π

Ωrs

e−2πrsΩ

e2πrsΩ − e−2πrsΩ

∫ ∞
0

dω ω−1 (9.68)

=
1

e4πrsΩ − 1

∫ ∞
0

dω
rs
πω

. (9.69)
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By using the definition for the surface gravity κ = 1/(2rs) of the black hole, we arrive at the
familiar expression

n(Ω) =
1

e2πΩ/κ − 1
(9.70)

for the mean density of particles with frequency Ω emitted by a black hole via Hawking radi-
ation. As shown in Eq. (9.70), the function n(Ω) is governed by a Bose-Einstein distribution.

In the case of the inverted harmonic oscillator, we have obtained a Fermi-Dirac distribution
as a consequence of the Fourier transform of a logarithmic phase singularity in combination
with an inverse square-root amplitude singularity. This particular dependency is reflected in
the transmission and reflection coefficients of this system. Contrarily, in our discussion of the
black hole it was the Fourier transform of a logarithmic phase singularity with a simple pole
in the amplitude which lead to the appearance of a Bose-Einstein distribution.
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Problem 10

Rare and Extreme Events in Nonlinear Physics: From Fiber Optics to
Oceanic Waves
Prof. Dr. Christophe Finot – University of Burgundy

Background Single mode optical fibers are a nearly ideal medium of propagation: the very low
level of attenuation of silica combined with the single mode behavior of the fiber enables light
to propagate with a spatial profile unaffected over kilometers and kilometers. However, in the
case of ultrashort and powerful pulses, two effects have to be taken into account: the dispersion
and the nonlinearity that are related to the dependence of the optical index on the frequency and
power, respectively.

In the present exercise, we explore the intriguing relationship between the propagation of light
in single mode optical fibers and the occurrence of rare and extreme events for oceanic waves.

In the first part of the exercise, we compare the propagation of ultrashort optical pulses and the
spatial profile of continuous electromagnetic waves. For an ultrashort optical pulse we display
in Fig. 10.1 (a) the intensity of the electromagnetic field including the optical carrier (blue) and
the temporal profile of the slowly-varying envelope |ψ(z, t)|2 (red) at a given position z = z0. In
Fig. 10.1 (b) we show the spatial intensity distribution |Ψ (z, x)|2 of a continuous electromagnetic
wave as a function of the propagation coordinate z and the transversal coordinate x.

Figure 10.1 (a) The temporal intensity profile of an ultrashort optical pulse (blue) and its envelope |ψ(z, t)|2

(red) at a given position z = z0. (b) The spatial intensity profile |Ψ(z, x)|2 of a continuous electromagnetic
wave with regard to the transversal coordinate x and the propagation coordinate z.

a) [0.5 points] We study the dynamics of an ultrashort pulse with duration above 1 ps as depicted
in Fig. 10.1 (a). Under the approximation of a slowly-varing envelope (i.e. the optical carrier of the
light pulse is neglected) and within the scalar approximation, the evolution of the complex electric
field ψ(z, t) is governed by the partial differential equation

i
∂ψ

∂z
=
β2

2

∂2ψ

∂t2
(10.1)

with z and t being the distance and temporal coordinate, respectively. Here β2 denotes the second-
order dispersion coefficient. At the position z = z0, the shape of the pulse is determined by the
initial condition ψ(z0, t) = ψ0(t).
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In order to understand the effect of dispersion, it is beneficial to work in Fourier space. The
Fourier transform of ψ(z, t) is given by

ψ̃(z, ω) =
1√
2π

∫
dt eiωtψ(z, t). (10.2)

Using Eq. (10.1) please derive a solution for ψ̃(z, ω) and explain the effect of dispersion with it.

b) [0.5 points] We turn now to the spatial propagation of the complex electric field Ψ(x, z) of a
continuous wave as displayed in Fig. 10.1 (b). The Helmholtz equation that rules diffraction under
1D paraxial conditions reads

i
∂Ψ

∂z
= − λ

4π

∂2Ψ

∂x2
(10.3)

with z and x being the longitudinal and transverse coordinate, respectively. Here λ denotes the
wavelength and Ψ0(x) = Ψ(z0, x) is the initial profile at z = z0.

What are the analogies that can be drawn between the dispersion of an ultrashort pulse and the
diffraction of a continuous wave? Comment on the impact of dispersion and diffraction.

Hint: Make use of Fourier space for your analysis.

c) [0.5 points] Next, we analyze the dynamics of an ultrashort optical pulse ψ(z, t) for a negligible
second-order dispersion coefficient |β2| � 1 in Eq. (10.1). When the effects of nonlinearity in the
optical fibre become significant, the electromagnetic field evolves according to the equation

∂ψ

∂z
= iγ |ψ|2 ψ, (10.4)

where γ is the nonlinear coefficient of the optical fiber.
Consider the case that the intensity profile |ψ(z, t)|2 is independent of the distance z and deter-

mine the corresponding solution of Eq. (10.4). What is the physical consequence of the so-called
Kerr nonlinearity in Eq. (10.4) on the temporal profile of the pulse?

d) [1 point] For an ultrashort optical pulse in a nonlinear fiber, an effect called self-focusing can
occur. To obtain a deeper insight into this phenomenon, we establish again an analogy to the spa-
tial profile Ψ(z, x) of a continuous electromagnetic wave. In wave optics, the impact of a perfectly
converging 1D lens of focal length f situated at the propagation coordinate z = z1 can be described
as

Ψ(z+
1 , x) = exp

(
−i
πx2

λf

)
Ψ(z−1 , x), (10.5)

where Ψ(z−1 , x) and Ψ(z+
1 , x) are the fields directly before and after the lens. Here λ is the wavelength

introduced in Eq. (10.3).
Explain why the nonlinearity in Eq. (10.4) acts like a converging lens. For this purpose, we analyze

an ultrashort optical pulse with a symmetric temporal profile ψ(z0, t) at z = z0. As an example

please use a Gaussian pulse ψ(z, t) = ψmaxe−
t2

K2 , with temporal width K and amplitude ψmax. For
this exercise it is sufficient to approximate the pulse shape to second-order in t. Note, that the
intensity profile |ψ(z, t)|2 remains independent of z as in c). Determine the waveform ψ(z = d, t) at
the position z = d > z0 and compare it to Eq. (10.5).
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In the second part of the exercise, we take a closer look at nonlinear effects. Indeed, for ultra-
short high-power waveforms, both dispersive and nonlinear effects act simultaneously. Thus, the
evolution of the optical pulse is described by the nonlinear Schrödinger equation

i
∂ψ

∂z
=
β2

2

∂2ψ

∂t2
− γ |ψ|2 ψ. (10.6)

By using the normalized coordinates ξ = z/L and τ = t/t0 with the characteristic length L =
1/(γP0) and time t0 =

√
|β2|L, Eq. (10.6) reduces for β2 < 0 to

i
∂A

∂ξ
= −1

2

∂2A

∂τ2
− |A|2A, (10.7)

where the function A = ψ/
√
P0 contains the typical power P0 of the waveform under study.

e) [2 points] The mathematical solutions of the nonlinear Eq. (10.7) are non-trivial. However, some
specific wave forms have been identified in the past. We focus our attention on two of these waves,
the soliton

As(ξ, τ) = sech(τ)eiξ/2 (10.8)

and the Peregrine breather

Ap(ξ, τ) =

[
1− 4 (1 + 2iξ)

1 + 4τ2 + 4ξ2

]
eiξ. (10.9)

Here we have introduced the hyperbolic secant function

sech(τ) =
2

eτ + e−τ
. (10.10)

Plot the very approximate intensity profiles |As|2 and |Ap|2 at ξ = 0, ξ = −∞ and ξ = ∞ as a
function of τ . Identify in both cases the value of the intensity at τ = ±∞ as well as the peak power
at τ = 0. How does the peak power of the two waves evolve as a function of ξ? Identify the main
differences between these two waves.

Hint: For the soliton case, you may find insights by using a rough approximation of the exponential to the
second-order; qualitative links to a Lorentzian waveform can also be drawn.

f ) [1 point] All the effects observed in e) are intimately linked to a process that is called modu-
lation instability. In order to highlight this phenomenon, let us switch again to the unnormalized
Schrödinger equation (10.6) and consider a continuous wave

ψC(z, t) = ψ0 exp (iγP0z) (10.11)

which is a solution of equation (10.6). Here ψ0 and P0 are real-valued and correspond to the initial
wave amplitude and power, respectively. In order to check if the solution ψC(z, t), Eq. (10.11), is
stable against perturbation, we consider the perturbed wave

ψε(z, t) = [ψ0 + ε(z, t)] exp (iγP0z) = ψC + ε(z, t) exp (iγP0z) . (10.12)

Problem 10 PLANCKS 2022 59



By plugging the perturbed wave ψε(z, t) into the nonlinear Schrödinger equation (10.6), derive
the equation

i
∂ε

∂z
=
β2

2

∂2ε

∂t2
− γP0 (ε+ ε∗) (10.13)

that is satisfied by the function ε(z, t).
Hint: The perturbation is assumed to be small, so that terms of order ε2 can be neglected.

g) [2 points] We are looking for a solution of Eq. (10.13) that can be expressed as a plane wave

ε(z, t) = a1 exp [i(kz − ωt)] + a2 exp [−i (k∗z − ωt)] , (10.14)

where a1, a2, and k are complex-valued constants. Show that a1 and a2 are solutions of the system(
β2

2
ω2 + γP0 − k

)
a1 + γP0a

∗
2 = 0

γP0a
∗
1 +

(
β

2
ω2 + γP0 + k∗

)
a2 = 0 (10.15)

of coupled equations. For certain k these coupled equations can have non-trivial solutions. Deter-
mine k for a non-trivial solution as a function of the parameters β2, ω, γ, and P0.

h) [1.5 points] The nonlinear system will be stable against perturbation when k is purely real. Oth-
erwise, when k contains an imaginary part, an exponential growth of the perturbation will happen
as evident from Eq. (10.14). Can the propagation be unstable in the regime of normal dispersion
(β2 > 0) or anormalous dispersion (β2 < 0)? Derive the range of the frequency ω for which the wave
is unstable. What is the frequency for which most of the gain is observed (the gain is given by the
imaginary part of k). Draw the approximate shape of the gain as a function of the frequency ω.

i) [1 point] The nonlinear Schrödinger equation also models the propagation of oceanic waves. In
this context, the envelope u(z, t) of a modulated wave train with wave vector k0 propagating in a 1D
water tank along the z-direction is governed by the equation

i
∂u

∂z
=

1

g

∂2u

∂t2
+ k3

0 |u|
2 u (10.16)

with g being the gravitational acceleration. By using normalized quantities, Eq. (10.16) can be cast
into the form

i
∂U

∂ξ
= −1

2

∂2U

∂τ2
− |U |2 U. (10.17)

Propose a solution U(ξ, τ) of Eq. (10.17) that could be relevant for the explanation of oceanic
rogue waves. These are particular waves that appear from nowhere and disappear without leaving
a trace.
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Solution
More information on the solution of the nonlinear Schrödinger equation with dispersion for part
d)-i) can be found here: https://www.nature.com/articles/nphys1740.pdf

a) The inverse Fourier transform is given by

ψ(z, t) =
1√
2π

∫
dω e−iωtψ̃(z, ω). (10.18)

We insert this expression into both sides of Eq. (10.1) and obtain

i
∂

∂z

[
1√
2π

∫
dω e−iωtψ̃(z, ω)

]
=
β2

2

∂2

∂t2

[
1√
2π

∫
dω e−iωtψ̃(z, ω)

]
(10.19)

0 =
1√
2π

∫
dω e−iωt

[
∂

∂z
ψ̃(z, ω)− iω2β2

2
ψ̃(z, ω)

]
. (10.20)

This is solved by

ψ̃(z, ω) = ψ̃0(ω)eiω2 β2
2

(z−z0) with ψ̃0(ω) =
1√
2π

∫
dt eiωtψ0(t). [0.25 Points] (10.21)

Therefore, the dispersion adds a phase term to the wave. For non-monochromatic beams this may
change the pulse-shape of the wave. [0.25 Points]

b) As hinted we analyse the Fourier transform

Ψ̃(z, kx) =
1√
2π

∫
dx eikxxΨ(z, x). (10.22)

The Helmholtz equation has the same mathematical structure as Eq. (10.1), therefore we can di-
rectly write down the solution

Ψ̃(z, kx) = Ψ̃0(kx)e−ik2x
λ
4π

(z−z0) with Ψ̃0(kx) =
1√
2π

∫
dx eikxtΨ0(x). [0.25 Points] (10.23)

Both, dispersion and diffraction, induce a quadratic phase term to the Fourier-transformed wave.
Dispersion is related to the temporal content of the wave (when it is not monochromatic) and
diffraction is associated to the spatial propagation (appears when the wave is not a plane wave).
In both cases, they leave the optical spectrum of the wave unchanged. Note, in order to have the
same sign in the exponential term, we have to consider a dispersion coefficient β2 which is negative.
[0.25 Points]

c) Since we assume |ψ(z, t)|2 to be independent of z, the solution is simply given by an exponential

ψ(z, t) = eiγ|ψ(z,t)|2(z−z0)ψ0(t) with ψ0(t) = ψ(0, t). [0.25 Points] (10.24)

With this solution our assumption holds true, i.e. |ψ(z, t)|2 = |ψ(0, t)|2. Contrary to the case of
dispersion, a phase is added to the temporal domain not the spectral domain. Therefore, the phase
of the propagation pulse is modulated, depending on its intensity, along its propagation direction.
[0.25 Points]

d) We need to analyse a symmetric bell-shaped intensity profile up to second-order. Therefore we
can write the Gaussian up to second-order in t

|ψ(z, t)|2 ≈ |ψmax|2
(

1− t2

K2

)
. (10.25)
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Plugging this approximation into the solution of the previous task yields

ψ(d, t) = ψ0(t) exp

[
iγ|ψmax|2

(
1− t2

K2

)
z

]
= ψ0(t) exp

(
iγψmax(d− z0)− iγ|ψmax|2

(d− z0)

K2
t2
)
.

(10.26)
[0.5 Points]
While the first term leads to a homogeneous phase shift of the whole pulse, the second term adds
a quadratic phase shift in the temporal domain, which is a temporal analog to the lens term. This
quadratic phase term would lead to a temporal focusing of the propagating pulse if in addition dis-
persion is considered, just like a freely propagating beam, following the diffraction of the Helmholtz
equation, is focused by a 1D lens in space. [0.5 Points]

e) Let us first calculate the expression for the intensity profiles of the soliton and the Peregrine
breather.

Before we start, we take note of the hint and recall the series expansion of the exponential:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+ . . . . (10.27)

Using the approximation up to second-order we obtain for the soliton

|As(ξ, τ)|2 =
∣∣∣sech(τ)eiξ/2

∣∣∣2 (10.28)

=
4

(eτ + e−τ )2 (10.29)

=
4

2 + e2τ + e−2τ
(10.30)

≈ 4

2 + 1 + 2τ + 4τ2

2 + 1− 2τ + 4τ2

2

(10.31)

=
1

1 + τ2
. [0.5 Points] (10.32)

For the Peregrin breather we obtain

|Ap(ξ, τ)|2 =

∣∣∣∣[1− 4 (1 + 2iξ)

1 + 4τ2 + 4ξ2

]
eiξ

∣∣∣∣2 (10.33)

=

∣∣∣∣1 + 4τ2 + 4ξ2 − 4− i8ξ

1 + 4τ2 + 4ξ2

∣∣∣∣2 (10.34)

=

(
1 + 4τ2 + 4ξ2 − 4

)2
+ 82ξ2

(1 + 4τ2 + 4ξ2)2 (10.35)

=

(
1 + 4τ2 + 4ξ2

)2 − 8
(
1 + 4τ2 + 4ξ2

)
+ 16 + 82ξ2

(1 + 4τ2 + 4ξ2)2 (10.36)

= 1 +
8− 32τ2 + 32ξ2

(1 + 4τ2 + 4ξ2)2 (10.37)

= 1 + 8
1− 4τ2 + 4ξ2

(1 + 4τ2 + 4ξ2)2 . [0.5 Points] (10.38)
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Let’s analyse these two solutions. The intensity profile of the soliton is approximated by a Lorentzian
and does not depend on ξ, so the pulse intensity stays constant during propagation. The peak
power rises from 0 at τ → ±∞ to 1 at τ = 0.

The Peregrine breather in contrast does depend on the ξ-coordinate. For ξ → ±∞ the intensity
profile is just a flat line. At ξ = 0 it is given by

|Ap(0, τ)|2 = 1 + 8
1− 4τ2

(1 + 4τ2)2 . (10.39)

This function peaks at a value of 9 at τ = 0 and decays to 1 for τ → ±∞. The peak power at τ = 0 in
dependence of ξ is given by

|Ap(ξ, 0)|2 = 1 +
8

1 + 4ξ2
, (10.40)

which is a Lorentzian function plus a constant offset. [0.5 Points] for explanation of Peregrine
breather

The soliton solution with and without the second-order approximation, the Peregrine breather
solution for ξ = 0 and ξ = ±∞ and the peak power of both solutions in dependence of ξ are plotted
in Fig. 10.2.
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Figure 10.2 (a) Intensity profile |As(ξ, τ)|2 of the soliton solution with (orange) and without (blue) approxima-
tion. (b) Intensity profile |AP (ξ, τ)|2 of the Peregrine breather solution for ξ = 0 (blue) and ξ = ±∞ (orange).
(c) Peak power in dependence of ξ for the soliton (blue) and Peregrine breather (orange) solutions.

The interpretation of the solutions is the following: The soliton is a special solution for which the
effects of dispersion and nonlinear self focusing cancel, therefore it can propagate with a constant
intensity profile. The Peregrine breather in contrast does not maintain its shape, it emerges from a
continuous wave and then focuses to a pulse lying over a continuous background, before it finally
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disappears again. [0.5 Points] for explanation of soliton

f ) This exercise is just a straightforward calculation. To make it easier we calculate the different
terms of the nonlinear Schrödinger equation separately.

i
∂ψε(z, t)

∂z
=
β2

2

∂2ψε(z, t)

∂t2
− γ |ψε(z, t)|2 ψε(z, t), (10.41)

also keep in mind, that ψ0 is real. The terms are

i
∂ψε(z, t)

∂z
=− γP0 [ψ0 + ε(z, t)] exp (iγP0z) +

∂ε(z, t)

∂z
exp (iγP0z) , (10.42)

β2

2

∂2ψε(z, t)

∂t2
=
β2

2

∂2ε(z, t)

∂t2
exp (iγP0z) [0.25 Points] (10.43)

and

−γ |ψε(z, t)|2 ψε(z, t) =− γ |ψ0 + ε(z, t)|2 [ψ0 + ε(z, t)] exp (iγP0z) (10.44)

≈− γ
[
ψ2

0 + ε(z, t)ψ0 + ε∗(z, t)ψ0

]
[ψ0 + ε(z, t)] exp (iγP0z) (10.45)

≈− γP0 [ψ0 + ε(z, t)] exp (iγP0z)− γP0 [ε(z, t) + ε∗(z, t)] exp (iγP0z) . (10.46)

[0.25 Points]

We notice that −γP0 [ψ0 + ε(z, t)] exp (iγP0z) appears on both sides of the equation and that all
terms can be divided by exp (iγP0z) [0.5 Points]. Therefore, the final result is

i
∂ε(z, t)

∂z
=
β2

2

∂2ε(z, t)

∂t2
− γP0 [ε(z, t) + ε∗(z, t)] . (10.47)

g) Here, we need to insert the suggested expression for ε(z, t) into Eq. (10.13), we obtain

−a1kei(kz−ωt) + a2k
∗e−i(k∗z−ωt) =− ω2β2

2

[
a1ei(kz−ωt) + a2e−i(k∗z−ωt)

]
(10.48)

− γP0

[
(a1 + a∗2) ei(kz−ωt) + (a∗1 + a2) e−i(k∗z−ωt)

]
. [0.5 Points]

(10.49)

[(
β2

2
ω2 + γP0 − k

)
a1 + γP0a

∗
2

]
ei(kz−ωt) = −

[
γP0a

∗
1 +

(
β

2
ω2 + γP0 + k∗

)
a2

]
e−i(k∗z−ωt) (10.50)

This equation can only be fulfilled, if the left- and right-hand terms proportional to exp [i(kz − ωt)]
and exp [i (k∗z − ωt)] fulfill their sub equation, we therefore, obtain the final set of equations(

β2

2
ω2 + γP0 − k

)
a1 + γP0a

∗
2 = 0

γP0a
∗
1 +

(
β

2
ω2 + γP0 + k∗

)
a2 = 0. (10.51)

By complex conjugating the second equation, this set of coupled equations can be cast into ma-
trix form (β22 ω2 + γP0 − k

)
γP0

γP0

(
β2
2 ω

2 + γP0 + k
)(a1

a∗2

)
=

(
0
0

)
. [0.5 Points] (10.52)
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Only if the determinant is zero, there can be a non-trival solution. Therefore, we can calculate k
via the determinant

0 =

(
β2

2
ω2 + γP0 − k

)(
β2

2
ω2 + γP0 + k

)
− γ2P 2

0 [0.5 Points] (10.53)

=

(
β2

2
ω2 + γP0

)2

− k2 − γ2P 2
0 (10.54)

→ k =±
√
β2

2

4
ω4 + β2ω2γP0. (10.55)

Therefore the final results is

k = ±1

2
|β2ω|

√
ω2 +

4γP0

β2
. [0.5 Points] (10.56)

h) In the normal regime of dispersion, k is always real so that no modulation instability can de-
velop. In the anomalous regime of dispersion (β2 < 0), modulation instability can occur when

ω2 +
4γP0

β2
< 0. (10.57)

From here we can derive a critical frequency

ωc = 2

√
γP0

|β2|
. [0.5 Points] (10.58)

If ω < ωc, k will be purely imaginary and there can be a modulation instability. If ω > ωc there
can not be any instability as k is real.
In order to find the maximum gain, we calculate the maximum of k2. It is clear that there will be a
maximum, as k = 0 for ω = 0 and ω = ωc. Working with k2 is easier than working with k

0 =
∂k2

∂ω
(10.59)

0 =β2
2ω

3 + 2β2ωγP0 (10.60)

=β2ω
(
β2ω

2 + 2γP0

)
. (10.61)

As β2 < 0 the derivative is zero for ωmax =
√

2γP0

|β2| . Note, that ωc =
√

2ωmax. Inserting ωmax into the

expression for k yields

k = ±
√
β2

2

4
ω4 + β2ω2γP0 (10.62)

= ±

√
β2

2

4

4γ2P 2
0

β2
2

− |β2|
2γ2P 2

0

|β2|
(10.63)

= ±
√

1− 2γP0 = ±iγP0. [0.5 Points] (10.64)
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Therefore, the maximal gain is |k| = γP0. The shape of the gain needs to be the following. It is
zero at ω = 0 and ω = ωc. For small ω it needs to rise almost linearly, as the ω2 term in the square
root of Eq. (10.56) can be neglected. At the maximum at ωmax the parabola in the square root takes
over and the gain drops relatively quickly to zero. The gain function is plotted in Fig. 10.3. [0.5
Points]
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Figure 10.3 Gain profile (|Im(k)|) of the modulation instability. The dashed line shows the position of maximal

gain ωmax =
√

2γP0

|β2| . The dashed-dotted line shows the position of the critical frequency ωc =
√

2ωmax above

which the gain is zero.

i) The mathematical form of Eq. (10.17) is identical to the normalized nonlinear Schrödinger equa-
tion (10.7). Therefore, the two equations share the same solutions. As we have seen the Peregrine
breather solution forms out of a homogeneous background and peaks sharply at a certain position.
Consequently, the solution of the Peregrine breather is clearly a prototype of the so-called rogue
wave. [1 Point]

66 PLANCKS 2022 Problem 10


	On the Gravitational Three-Body Problem
	James Bond's Car Crash in Casino Royale
	Rope around the World
	The Galactic Centre Laboratory
	Conditions for a Self-Heated Fusion Plasma
	Boltzmann-Factors from Information Entropy
	Active Brownian Particle
	Quantum Convolutional Neural Network
	Hawking Radiation, the Logarithmic Phase Singularity, and the Inverted Harmonic Oscillator
	Rare and Extreme Events in Nonlinear Physics: From Fiber Optics to Oceanic Waves

