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Nuclear and Particle Physics

i) The strong nuclear force is transmitted between a proton and neutron by the creation and
exchange of a pion. Taking the range of the strong nuclear force to be about 1 fermi (10−15

m), Yukawa calculated the approximate mass of the pion carrying the force, assuming it
moves at nearly the speed of light. Please estimate the mass of pion, reproducing the
original, but simplified calculation of the Yukawa.

2 p

ii) Please explain if this particle is observable or not.
1 p

iii) What is the minimum kinetic energy necessary as the process p + n → p + n + π0 to be
produced. The threshold energy corresponds to minimum energy for direct observable of
the neutral pion. mp = mn

∼= 940 MeV/c2; mπ
∼= 135 MeV/c2

2 p

iv) The neutron is an unstable particle. Please draw the decay process at quark level, putting
in evidence the correct propagator of the dominant force.

Specify the time flow axis and show the conservation of electric charge in each vertex. How
is it possible that for a neutron and a proton, particles with masses of about 0.939 GeV/c2,
respectively 0.938 GeV/c2, the propagator W has a mass of about 83 GeV/c2.

2 p

v) What was the dominant interaction (force) in this case. Calculate the radius of action of
this interaction in the considered disintegration.

2 p

Oficiu: 1 p
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Thermodynamics

The state equation of a thermodynamic system is:

p =
AT 2

V
(1)

in which p, V and T represent pressure, volume and temperature, whereas A is a constant.
The expression of the internal energy of the system is provided by the relation:

U = BT nln

(
V

V0

)
+ f (T ) (2)

in which B, n and V0 are constants, whereas f (T ) is a function which depends only on
temperature. Find the values of B and n.
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Electron motion under the weak influence of a circular current loop

An electron moves within a close region of the rotational x-axis of a circular current loop
(radius R, intensity I). When far away from the loop center, the electron moves at a velocity v
parallel to the x-axis. The coil influence on electron velocity v is negligible, except for a small
region close to the center of the coil. The initial velocity is not considerably altered during
electron motion, but is not a constant.

Compute the angle that the electron will have rotated around x-axis with respect to its
initial (far away) position, long after passing through the coil.
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Thin reflective and anti-reflective layers

A. A film of soapy water (n = 4/3) is illuminated with monochromatic optical radiation such
at an angle of incidence is 30◦. Maximum interference is observed when the light has a
wavelength of 640 nm, and minimum interference occurs when the wavelength is 400 nm.

Derive the mathematical expression of the minimum film thickness and calculate its nu-
merical value.

2 p

B. Consider the normal incidence of light on the separation surfaces between the optical
media. A dielectric layer with thickness t and refractive index n1 is deposited on the
surface of a glass lens (n = 1.5). The light originates from air (n0 = 1), traverses the
layer, and then the lens.

1. Derive the expression for the energy reflection coefficient of the input face-layer
assembly of the lens

2 p

2. Using a light beam of wavelength λ0 = 500 nm (in vacuum), deduce the refractive
index and the minimum thickness of the layer for it to be antireflective.

1 p

C. Let us consider a structure comprising multiple (double) layers of transparent dielectric,
with alternating refractive indices n1, n2 (n1 > n2), as in the figure. The thicknesses
corresponding to the layers are l1, l2.

Figure 1: A structure comprising multiple (double) layers of transparent dielectric

1. Derive the expression for the energy reflection coefficient for such a structure, consist-
ing of N such double layers, where the thicknesses correspond to a phase difference
π/2.

2 p

2. If such a double layer is deposited on the surface of the lens at point B, deduce
the condition under which this double layer does not allow the reflection of light.
Compare this result with the one from point B, what provide your observations.

1 p

3. Calculate the reflection coefficient for a single double layer for the case n1 = 2.4 (TiO2

titanium dioxide) and n2 = 1.38 (MgF2 magnesium fluoride). Assume n = n0 = 1.
1 p

4. Determine the number of TiO2−MgF2 double layers required to achieve a reflection
coefficient greater than 95%. Assume n = n0 = 1.

1 p
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Conductivity in disordered electronic systems

Introduction

In some conditions, energy bands exists in disordered materials, including extended elec-
tronic states in the middle of the bands and localized states in the band tails (Fig. 1).
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Figure 1: Density of states in a disordered material: electronic states in the band tails are
localized, states in the middle of the bands are extended.

In the following, you are asked to study various conduction mechanisms, corresponding to
extended or localized states.

Electrical conductivity at T = 0 K

1. Because of disorder, the mean free path l of charge carriers is finite. Consider first the
contribution of the electrons occupying extended states (kF l ≫ 1), with energy Eα; those
states can be expanded in terms of a discrete plane-wave basis set:

|α⟩ =
∑
k⃗

a
(α)

k⃗
|⃗k⟩. (1)

The real part of the electrical conductivity can be calculated by using Kubo-Greenwood
formula:

Reσ(ω) =
e2π

ωm2V

∑
α ̸=β

|p|2αβ(f
(0)
β − f (0)

α )δ(Eα − Eβ − ℏω), (2)

where Re z is the real part of the complex quantity z, V is the volume of the system,
pαβ = ⟨α|p|β⟩, and f (0)(E) is Fermi-Dirac distribution function. Show that at T = 0K
ec. (2) may be recast as:

Reσ(ω) =
2π e2V ℏ
m2

∫ EF

EF−ℏω

|pαβ|2n(E)n(E + ℏω)
ℏω

dE, (3)

where n(E) is the density of 1-particle states (DOS) per spin. Supposing that DOS of
the disordered system is not significantly modified as compared to that in the crystalline
(ordered) system and that:

|pαβ|2 =
2ℏ2π l
3V

1

1 + (kα − kβ)2l2
, (4)

determine Reσ(ω) in the limit ℏω ≪ EF . Show that the classical result (Drude formula)
is recovered. Give a physical explanation for that result.
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2. The mean free path in a conductor cannot be less than de Broglie’s wavelength of elec-
trons (criterion of Ioffe and Regel). Show that this criterion defines a minimum value of
Reσ(0), minimum metallic conductivity, introduced first by Mott. Determine the min-
imum metallic conductivity and show that it is inversely proportional to the minimum
mean free path.

3. Consider now the contribution of localized states. Consider two sites, a and b, separated
by the distance R, where localized states |a⟩ and |b⟩ (corresponding to the same energy)
are centered. If there is a superposition of the wave functions associated to those two
states, the degeneracy is removed, and the eigenstates associated to the system of the
coupled centers read:

|ψ1⟩ = 1√
2
(|a⟩+ |b⟩)

|ψ2⟩ = 1√
2
(|a⟩ − |b⟩) (5)

4. Show qualitatively that the energies associated to |ψ1⟩ and |ψ2⟩ are separated by the
quantity (resonance energy)

2I = 2I0 exp(−KR), (6)

K−1 being the localisation radius of localized states (suppose they are s-type orbitals).

5. Starting from eq. (3), show that the conductivity can be expressed as a function of the
matrix elements of the position operator r⃗. (Hint: use the dynamical equation of r⃗ in the
Heisenberg picture of the quantum mechanics).

6. In the limit ℏω ≪ EF , in a disordered system, physical meaning has the average of the
conductivity over all possible configurations of the sites r⃗a and r⃗b, supposed uniformly
distributed. Introducing R⃗ = r⃗a − r⃗b, determine the expression of the average ⟨σ(ω)⟩ as
a function of r⃗a, R⃗ and of the matrix elements r⃗αβ = ⟨α|r⃗|β⟩.

7. Determine r⃗αβ for small R (KR ≤ 1), supposing s-type localized orbitals. Show that:

|r⃗αβ| =
R

2
. (7)

8. Show qualitatively that at large distances (KR ≫ 1):

|r⃗αβ| ∝ Re−KR. (8)

9. In this regime, electrical conduction occurs through electron hopping between localized
states separated by R. Determine the minimum hopping distance Rω, knowing that the
corresponding resonance energy is less than ℏω.
Show that in this case the essential contribution to the average of the conductivity comes
from the spherical shell of radii Rω and Rω + 1

K
. As a consequence, show that:

⟨σ(ω)⟩ ∝ ω2(logω)4. (9)
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Relativistic particles

The average lifetime of the muon in its proper/rest frame is 2.2 × 10−6s, its rest mass is
106 MeV .

(a) Assuming that muons travel at 99.8% of the speed of light, show that cosmic radiation
muons can indeed be detected on the surface of the Earth. Take d = 10km as thickness
of Earth’s atmosphere and 299.8 · 106m/s the speed of light. The direction of the muon
is vertical with respect to the ground.

(b) What is the smallest energy required for muons to hit the ground before they decay,
assuming that they are produced at an altitude of 10 km above ground? (here you drop
the velocity assumption at point (a)!). The direction of the muon is vertical again.

(c) A circular accelerator has a radius of 50m. How many turns can a muon take on average in
this ring before it decays if its energy is kept constant at 1 GeV? Here, take c = 3·108m/s.
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How cold is too cold?

In an ice skating rink, skating becomes unpleasant (i.e. falling frequently) if the temperature
is too cold so that the ice becomes too hard. Estimate the lowest temperature of the ice on a
skating rink for which ice skating for a person of normal weight would be possible and enjoyable
(the latent heat of ice is 334 J/g and water expands by 0.091 cm3/g when it freezes). Hint :
the freezing point of water occurs at p0 ≃ 1 atm and T0 ≃ 273.16 K.
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Neutrons in a box

We have a point-like non-relativistic neutron source in a one-dimensional system. At dis-
tance d from the source, there are walls on both sides of the source. The source emits isotrop-
ically P neutrons per second of energy E. The wall can be modelled as a one-dimensional
potential barrier of height V 0 = 2 ∗ E and width a (d >> a). The neutron reflection and
transmission probabilities at each collision with the walls are R and T , respectively. We want
to find the number of neutrons between the two walls at equilibrium (a long time after the
source has been turned on). The Planck constant – h and the mass of the neutron - m are
known.

a) Compute the average time a neutrons spends in between the walls. (3p)

b) Calculate N - the number of neutrons between the walls at equilibrium. (2p)

c) Calculate the energy eigenfunctions (wave-functions) of the neutrons in the barrier and
its vicinity without the normalization condition. (3p)

d) Calculate the reflection and the transition probability. (2p)

∞∑
i=0

i X i =
X

(1−X)2
when |X| < 1 (1)
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Tippe top1 

 

Author: Conf. dr. Tiberius O. Cheche 

 

A Tippe top is a special kind of top that can spontaneously 

invert once it has been set spinning (see the side Fig.1). There is 

no fixed point of the top and the friction force between the top and 

the surface it is moving on is the driving force.  

One can model a Tippe top as a sphere of radius 𝑅 that is 

truncated, with a stem added. It has rotational symmetry about the 

symmetry axis (SA) passing through the stem, which is at angle 𝜃 

from the vertical. As shown in Fig. 2(a), its centre of mass 𝐶 is 

offset from its geometric centre 𝑂 by ||CO||=𝛼𝑅 along SA. The 

Tippe top makes contact with the planar surface (floor) it rests on 

at point 𝐴. If the Tippe top spins fast enough initially about the 

(approximately) vertical SA, then it will tip so that the stem points increasingly downwards, until 

it starts to spin on in its stem (the sphere is above the stem which is in contact with the floor), and 

eventually stops to the equilibrium position shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2. Views of the Tippe top (a) from the side and (b) from above 

 

Let 𝑥𝑦𝑧 be the rotating reference frame defined such that the unit vector z of z axis is 

stationary and upwards, and the top's symmetry axis is within the 𝑥𝑧-plane. Two views of the 

Tippe top are shown in Fig. 2: from the side, and from above. As shown in Fig. 2(b), the top's SA 

is aligned with the 𝑥-axis when viewed from above. 

                                                           
1 The problem is adapted from Asian Physics Olympiad 2019 

 

 

Fig.1 Tippe top photo  
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Fig. 3 shows the top's motion at several phases after it is started spinning: 

(a) phase I: immediately after it is initially set spinning, with 𝜃 ∼ 0 

(b) phase II: soon after, having tipped to angle 0 < 𝜃 < 𝜋 2 

(c) phase III: when the stem first touches the floor, with 𝜃 > 𝜋 2 

(d) phase IV: after inversion, when the top is spinning on its stem, with 𝜃 ∼ 𝜋 

(e) phase V: in its final state, at rest on its stem 𝜃 = 𝜋. 

 

Fig 3. Phases I to V of the Tippe top's motion, shown in the 𝑥𝑧-plane 

Let 𝑋𝑌𝑍 be the fixed inertial frame, where the surface the top is on is wholly in the 𝑋𝑌-

plane. The above defined frame 𝑥𝑦𝑧 is reached from 𝑋𝑌𝑍 via rotation around the 𝑍 axis by 𝜙. The 

transformation from the 𝑋𝑌𝑍 frame to frame 𝑥𝑦𝑧 is shown in Figure 4(a). In particular, z Z . 

 

 
Fig. 4. Transformations between reference frames: (a) from 𝑋𝑌𝑍 to 𝑥𝑦𝑧, and (b) to 123 from 𝑥𝑦𝑧. 
 

Any rotational motion in 3-dimensional space can be described by the three Euler angles (𝜃, 𝜙, 

𝜓). The transformations between the inertial frame 𝑋𝑌𝑍, the intermediate frame 𝑥𝑦𝑧, and the top's 

frame 123 can be understood in terms of these Euler angles. In the 𝑋𝑌𝑍 frame they are defined as 

follows: 𝜃 is the angle of the top's symmetry axis from the vertical 𝑍-axis, representing how far 

from vertical its stem is, while 𝜙 represents the top's angular position about the 𝑍-axis, and is 

defined as the angle between the 𝑋𝑍-plane and the plane through points 𝑂, 𝐴, 𝐶 (i.e. the vertical 

projection of the top's symmetry axis). The third Euler angle 𝜓 describes the rotation of the top 

about its own symmetry axis, i.e. its 'spin', which has angular velocity   (generally for a physical 

quantity q, we denote q dq dt  as the time derivative of q). The reference frame of the spinning 

top rigidly attached to the top is defined as a new rotating frame 123, which is reached by rotating 

Z=z 

X 

Y 

y 

x 
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𝑥𝑦𝑧 by 𝜃 around y : 'tilting' the z axis down by 𝜃 to meet the top's symmetry axis 3 . The 

transformation from the 𝑥𝑦𝑧 frame to the 123 frame is shown in Figure 4(b). In particular, 2 y . 

Assume that the top remains in contact with the floor at point 𝐴, until such time as the stem 

contacts the floor. It is in motion at point 𝐴 with velocity Av  relative to the floor. The frictional 

coefficient k  between the top and floor is kinetic, with f k kF N N   , where 

, ,f f x f yF F x F y   is the frictional force, and 𝑁 is the magnitude of the normal force. Assume that 

the top is initially set spinning only, i.e. there is no translational impulse given to the top. 

Let the mass of the Tippe top be 𝑚. Its moments of inertia of the principal central axes are: 

𝐼3 about the axis of symmetry, and 𝐼1 = 𝐼2 about the mutually perpendicular principal axes. Let s  

be the position vector of the centre of mass, and a CA  be the vector from the centre of mass to 

the point of contact. 

Next, one investigates the physics of the Tippe top to set up the system of equations of 

motion. 

A1. Find the total external force extF  on the Tippe top. Draw a free body diagram of the top, 

projected onto each of the 𝑥𝑧 and 𝑥𝑦 planes. Indicate the direction of Av  in the space provided, 

on your diagram in the 𝑥𝑦-plane. Does the center of mass C keep its position during the 

motion relative to XYX?         1pt 

A2. Find the total external torque ext  on the Tippe top about the centre of mass. 1.5pt 

A3. Explain why the contact condition can be written as   0s a z   . By using this contact 

condition show that the velocity at 𝐴 has no component in the 𝑧-direction, i.e. we can write 

A Ax Ayv v x v y  .           0.5pt 

A4. Find the total angular velocity 𝜔 of the rotating top about its centre of mass 𝐶 in terms of 

the time derivatives of the Euler angles: , ,   . Use Fig. 4 if this is helpful. Give your answer 

in both 𝑥𝑦𝑧 and 123 frames.         2pt 

A5. Find the total energy of a spinning Tippe top, in terms of time derivatives of the Euler 

angles, ,Ax Ayv v .            2pt 

A6. Find the rate of change of the angular momentum about the 𝑧-axis.   1pt 

A7. Show that the components of the angular momentum L  and angular velocity  that are 

perpendicular to the 3  direction are proportional, i.e.  3 3L k    , and find the 

proportionality constant 𝑘.         1pt 

 


